Publications by Author

Authors who are active project participants

  • Katrina E. Bennett

    2022

    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.

    2021

    • Harp, D. R., et al. “New Insights Into The Drainage Of Inundated Ice-Wedge Polygons Using Fundamental Hydrologic Principles”. The Cryosphere, 2021, pp. 4005 - 4029.

    2019

    • Bennett, K. E., et al. “Using Modis Estimates Of Fractional Snow Cover Area To Improve Streamflow Forecasts In Interior Alaska”. Hydrology And Earth System Sciences, 2019, pp. 2439 - 2459.
  • W. Robert Bolton

    2022

    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.

    2020

    • Iversen, C. M., et al. “Building A Culture Of Safety And Trust In Team Science”. Eos, 2020.
    • Euskirchen, E. S., et al. “Co‐Producing Knowledge: The Integrated Ecosystem Model For Resource Management In Arctic Alaska”. Frontiers In Ecology And The Environment, 2020, pp. 447-455.

    2015

    • Lara, M. J., et al. “Polygonal Tundra Geomorphological Change In Response To Warming Alters Future Co2 And Ch4 Flux On The Barrow Peninsula”. Global Change Biology, 2015, pp. 1634 - 1651.
  • Amy L. Breen

    2021

    • Mekonnen, Z. A., et al. “Arctic Tundra Shrubification: A Review Of Mechanisms And Impacts On Ecosystem Carbon Balance”. Environmental Research Letters, 2021, p. 053001.
    • Sulman, B. N., et al. “Integrating Arctic Plant Functional Types In A Land Surface Model Using Above‐ And Belowground Field Observations”. Journal Of Advances In Modeling Earth Systems, 2021.
    • Yang, D., et al. “Landscape-Scale Characterization Of Arctic Tundra Vegetation Composition, Structure, And Function With A Multi-Sensor Unoccupied Aerial System”. Environmental Research Letters, 2021, p. 085005.
    • Kropp, H., et al. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters, 2021, p. 015001.
    • Mekonnen, Z. A., et al. “Topographical Controls On Hillslope‐Scale Hydrology Drive Shrub Distributions On The Seward Peninsula, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2021.

    2020

    • Yang, D., et al. “A Multi-Sensor Unoccupied Aerial System Improves Characterization Of Vegetation Composition And Canopy Properties In The Arctic Tundra”. Remote Sensing, 2020, p. 2638.
    • Euskirchen, E. S., et al. “Co‐Producing Knowledge: The Integrated Ecosystem Model For Resource Management In Arctic Alaska”. Frontiers In Ecology And The Environment, 2020, pp. 447-455.

    2019

    • Salmon, V. G., et al. “Alder Distribution And Expansion Across A Tundra Hillslope: Implications For Local N Cycling”. Frontiers In Plant Science, 2019.
    • Langford, Z. L., et al. “Arctic Vegetation Mapping Using Unsupervised Training Datasets And Convolutional Neural Networks”. Remote Sensing, 2019, p. 69.

    2016

    • Euskirchen, E. S., et al. “Consequences Of Changes In Vegetation And Snow Cover For Climate Feedbacks In Alaska And Northwest Canada”. Environmental Research Letters, 2016.
    • Walker, D. A., et al. “The Alaska Arctic Vegetation Archive (Ava-Ak)”. Phytocoenologia, 2016, pp. 221 - 229.

    2015

    • Wullschleger, S. D., et al. “Genomics In A Changing Arctic: Critical Questions Await The Molecular Ecologist”. Molecular Ecology, 2015, pp. 2301 - 2309.
  • Baptiste Dafflon

    2022

    • Dafflon, B., et al. “A Distributed Temperature Profiling System For Vertically And Laterally Dense Acquisition Of Soil And Snow Temperature”. The Cryosphere, 2022, pp. 719 - 736.
    • Arendt, C. A., et al. “Increased Arctic No3− Availability As A Hydrogeomorphic Consequence Of Permafrost Degradation And Landscape Drying”. Nitrogen, 2022, pp. 314 - 332.
    • Wielandt, S., et al. “Low-Power, Flexible Sensor Arrays With Solderless Board-To-Board Connectors For Monitoring Soil Deformation And Temperature”. Sensors, 2022, p. 2814.
    • Shirley, I. A., et al. “Rapidly Changing High-Latitude Seasonality: Implications For The 21St Century Carbon Cycle In Alaska”. Environmental Research Letters, 2022, p. 014032.
    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.

    2021

    • Uhlemann, S., et al. “Geophysical Monitoring Shows That Spatial Heterogeneity In Thermohydrological Dynamics Reshapes A Transitional Permafrost System”. Geophysical Research Letters, 2021.
    • Wainwright, H. M., et al. “High-Resolution Spatio-Temporal Estimation Of Net Ecosystem Exchange In Ice-Wedge Polygon Tundra Using In Situ Sensors And Remote Sensing Data”. Land, 2021, p. 722.

    2020

    • Jafarov, E. E., et al. “Estimation Of Subsurface Porosities And Thermal Conductivities Of Polygonal Tundra By Coupled Inversion Of Electrical Resistivity, Temperature, And Moisture Content Data”. The Cryosphere, 2020, pp. 77 - 91.
    • Wales, N. A., et al. “Understanding The Relative Importance Of Vertical And Horizontal Flow In Ice-Wedge Polygons”. Hydrology And Earth System Sciences, 2020, pp. 1109-1129.

    2019

    • Léger, E., et al. “A Distributed Temperature Profiling Method For Assessing Spatial Variability In Ground Temperatures In A Discontinuous Permafrost Region Of Alaska”. The Cryosphere, 2019, pp. 2853-2867.
    • Arora, B., et al. “Evaluating Temporal Controls On Greenhouse Gas (Ghg) Fluxes In An Arctic Tundra Environment: An Entropy-Based Approach”. Science Of The Total Environment, 2019, pp. 284 - 299.

    2018

    • Bisht, G., et al. “Impacts Of Microtopographic Snow Redistribution And Lateral Subsurface Processes On Hydrologic And Thermal States In An Arctic Polygonal Ground Ecosystem: A Case Study Using Elm-3D V1.0”. Geoscientific Model Development, 2018, pp. 61-76.
    • Tran, A. P., et al. “Spatial And Temporal Variations Of Thaw Layer Thickness And Its Controlling Factors Identified Using Time-Lapse Electrical Resistivity Tomography And Hydro-Thermal Modeling”. Journal Of Hydrology, 2018, pp. 751-763.

    2017

    • Dafflon, B., et al. “Coincident Aboveground And Belowground Autonomous Monitoring To Quantify Covariability In Permafrost, Soil, And Vegetation Properties In Arctic Tundra”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 1321-1342.
    • Tran, A. P., et al. “Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling To Estimate Soil Organic Content And Explore Associated Hydrological And Thermal Dynamics In An Arctic Tundra”. The Cryosphere, 2017, pp. 2089-2109.
    • Wu, Y., et al. “Electrical And Seismic Response Of Saline Permafrost Soil During Freeze - Thaw Transition”. Journal Of Applied Geophysics, 2017, pp. 16-26.
    • Wainwright, H. M., et al. “Mapping Snow Depth Within A Tundra Ecosystem Using Multiscale Observations And Bayesian Methods”. The Cryosphere, 2017, pp. 857 - 875.
    • Léger, E., et al. “Quantification Of Arctic Soil And Permafrost Properties Using Ground-Penetrating Radar And Electrical Resistivity Tomography Datasets”. Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 2017, pp. 4348 - 4359.

    2016

    • Dafflon, B., et al. “Geophysical Estimation Of Shallow Permafrost Distribution And Properties In An Ice-Wedge Polygon-Dominated Arctic Tundra Region”. Geophysics, 2016, pp. WA247 - WA263.
    • Dafflon, B., et al. “Quantification Of Arctic Soil And Permafrost Properties Using Ground Penetrating Radar”. 2016 16Th International Conference On Ground Penetrating Radar (Gpr) , 2016.

    2015

    • Wainwright, H. M., et al. “Identifying Multiscale Zonation And Assessing The Relative Importance Of Polygon Geomorphology On Carbon Fluxes In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 788 - 808.

    2014

    • Gangodagamage, C., et al. “Extrapolating Active Layer Thickness Measurements Across Arctic Polygonal Terrain Using Lidar And Ndvi Data Sets”. Water Resources Research, 2014, pp. 6339 - 6357.

    2013

    • Dafflon, B., et al. “Electrical Conductivity Imaging Of Active Layer And Permafrost In An Arctic Ecosystem, Through Advanced Inversion Of Electromagnetic Induction Data”. Vadose Zone Journal, 2013.
    • Hubbard, S. S., et al. “Quantifying And Relating Land-Surface And Subsurface Variability In Permafrost Environments Using Lidar And Surface Geophysical Datasets”. Hydrogeology Journal, 2013, pp. 149 - 169.
  • David E. Graham

    2022

    • Zheng, J., et al. “Quantifying Ph Buffering Capacity In Acidic, Organic-Rich Arctic Soils: Measurable Proxies And Implications For Soil Carbon Degradation”. Geoderma, 2022, p. 116003.
    • Zhang, L., et al. “Unravelling Biogeochemical Drivers Of Methylmercury Production In An Arctic Fen Soil And A Bog Soil”. Environmental Pollution, 2022, p. 118878.

    2021

    • Roy_Chowdhury, T., et al. “Temporal, Spatial, And Temperature Controls On Organic Carbon Mineralization And Methanogenesis In Arctic High-Centered Polygon Soilsdata_Sheet_1.Docx”. Frontiers In Microbiology, 2021.

    2020

    • Philben, M. J., et al. “Anaerobic Respiration Pathways And Response To Increased Substrate Availability Of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, 2020, pp. 2070 - 2083.
    • Philben, M. J., et al. “Influences Of Hillslope Biogeochemistry On Anaerobic Soil Organic Matter Decomposition In A Tundra Watershed”. Journal Of Geophysical Research: Biogeosciences, 2020.

    2019

    • Zheng, J., et al. “Modeling Anaerobic Soil Organic Carbon Decomposition In Arctic Polygon Tundra: Insights Into Soil Geochemical Influences On Carbon Mineralization”. Biogeosciences, 2019, pp. 663 - 680.
    • Yang, Z., et al. “Temperature Sensitivity Of Mineral-Enzyme Interactions On The Hydrolysis Of Cellobiose And Indican By Beta-Glucosidase”. Science Of The Total Environment, 2019, pp. 1194 - 1201.

    2018

    • Jubb, A. M., et al. “Characterization Of Iron Oxide Nanoparticle Films At The Air–Water Interface In Arctic Tundra Waters”. Science Of The Total Environment, 2018, pp. 1460-1468.
    • Zheng, J., et al. “Impacts Of Temperature And Soil Characteristics On Methane Production And Oxidation In Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1 - 27.
    • Chen, H., et al. “Molecular Insights Into Arctic Soil Organic Matter Degradation Under Warming”. Environmental Science & Technology, 2018, pp. 4555-4564.

    2017

    • Herndon, E. M., et al. “Influence Of Iron Redox Cycling On Organo-Mineral Associations In Arctic Tundra Soil”. Geochimica Et Cosmochimica Acta, 2017, pp. 210-231.
    • Grant, R. F., et al. “Mathematical Modeling Of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond To Changes In Temperature And Precipitation”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 3161-3173.
    • Yang, Z., et al. “Microbial Community And Functional Gene Changes In Arctic Tundra Soils In A Microcosm Warming Experiment”. Frontiers In Microbiology, 2017.

    2016

    • Throckmorton, H. M., et al. “Active Layer Hydrology In An Arctic Tundra Ecosystem: Quantifying Water Sources And Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016.
    • Tang, G., et al. “Biogeochemical Model Of Carbon Dioxide And Methane Production In Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1 - 31.
    • Yang, Z., et al. “Effects Of Warming On The Degradation And Production Of Low-Molecular-Weight Labile Organic Carbon In An Arctic Tundra Soil”. Soil Biology And Biochemistry, 2016, pp. 202 - 211.
    • Schädel, C., et al. “Potential Carbon Emissions Dominated By Carbon Dioxide From Thawed Permafrost Soils”. Nature Climate Change, 2016, pp. 950 - 953.
    • Xu, X., et al. “Reviews And Syntheses: Four Decades Of Modeling Methane Cycling In Terrestrial Ecosystems”. Biogeosciences, 2016, pp. 3735 - 3755.
    • Yang, Z., et al. “Warming Increases Methylmercury Production In An Arctic Soil”. Environmental Pollution, 2016, pp. 504 - 509.

    2015

    • Xu, X., et al. “A Microbial Functional Group-Based Module For Simulating Methane Production And Consumption: Application To An Incubated Permafrost Soil”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1315 - 1333.
    • Herndon, E. M., et al. “Geochemical Drivers Of Organic Matter Decomposition In Arctic Tundra Soils”. Biogeochemistry, 2015, pp. 397 - 414.
    • Mann, B. F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. Plos One, 2015.
    • Heikoop, J. M., et al. “Isotopic Identification Of Soil And Permafrost Nitrate Sources In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1000 - 1017.
    • Newman, B. D., et al. “Microtopographic And Depth Controls On Active Layer Chemistry In Arctic Polygonal Ground”. Geophysical Research Letters, 2015, pp. 1808 - 1817.
    • Herndon, E. M., et al. “Pathways Of Anaerobic Organic Matter Decomposition In Tundra Soils From Barrow, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 2345 - 2359.
    • RoyChowdhury, T., et al. “Stoichiometry And Temperature Sensitivity Of Methanogenesis And Co2 Production From Saturated Polygonal Tundra In Barrow, Alaska”. Global Change Biology, 2015, pp. 722 - 737.

    2012

    • Graham, D. E., et al. “Microbes In Thawing Permafrost: The Unknown Variable In The Climate Change Equation”. The Isme Journal, 2012, pp. 709 - 712.
  • Susan L. Heinz

    2020

    • Krassovski, M. B., et al. “Hybrid-Energy Module For Remote Environmental Observations, Instruments, And Communications”. Advances In Polar Science , 2020, pp. 156-166.
  • Colleen M. Iversen

    2022

    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.

    2021

    • Euskirchen, E. S., et al. “Assessing Dynamic Vegetation Model Parameter Uncertainty Across Alaskan Arctic Tundra Plant Communities”. Ecological Applications, 2021.
    • Sulman, B. N., et al. “Integrating Arctic Plant Functional Types In A Land Surface Model Using Above‐ And Belowground Field Observations”. Journal Of Advances In Modeling Earth Systems, 2021.
    • Mekonnen, Z. A., et al. “Topographical Controls On Hillslope‐Scale Hydrology Drive Shrub Distributions On The Seward Peninsula, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2021.
    • Ladd, M. P., et al. “Untargeted Exometabolomics Provides A Powerful Approach To Investigate Biogeochemical Hotspots With Vegetation And Polygon Type In Arctic Tundra Soils”. Soil Systems, 2021, p. 10.

    2020

    • Zhu, Q., et al. “Assessing Impacts Of Plant Stoichiometric Traits On Terrestrial Ecosystem Carbon Accumulation Using The E3Sm Land Model”. Journal Of Advances In Modeling Earth Systems, 2020.
    • Iversen, C. M., et al. “Building A Culture Of Safety And Trust In Team Science”. Eos, 2020.
    • Lara, M. J., et al. “Local-Scale Arctic Tundra Heterogeneity Affects Regional-Scale Carbon Dynamics”. Nature Communications, 2020.
    • Gallagher, R. V., et al. “Open Science Principles For Accelerating Trait-Based Science Across The Tree Of Life”. Nature Ecology & Evolution, 2020, pp. 294 - 303.
    • Bergmann, J., et al. “The Fungal Collaboration Gradient Dominates The Root Economics Space In Plants”. Science Advances, 2020.

    2019

    • Salmon, V. G., et al. “Alder Distribution And Expansion Across A Tundra Hillslope: Implications For Local N Cycling”. Frontiers In Plant Science, 2019.
    • Langford, Z. L., et al. “Arctic Vegetation Mapping Using Unsupervised Training Datasets And Convolutional Neural Networks”. Remote Sensing, 2019, p. 69.
    • Norby, R. J., et al. “Controls On Fine-Scale Spatial And Temporal Variability Of Plant-Available Inorganic Nitrogen In A Polygonal Tundra Landscape”. Ecosystems, 2019, pp. 528–543.

    2016

    • Langford, Z. L., et al. “Mapping Arctic Plant Functional Type Distributions In The Barrow Environmental Observatory Using Worldview-2 And Lidar Datasets”. Remote Sensing, 2016, p. 733.
    • Kumar, J., et al. “Modeling The Spatiotemporal Variability In Subsurface Thermal Regimes Across A Low-Relief Polygonal Tundra Landscape”. The Cryosphere, 2016, pp. 2241 - 2274.
    • Schädel, C., et al. “Potential Carbon Emissions Dominated By Carbon Dioxide From Thawed Permafrost Soils”. Nature Climate Change, 2016, pp. 950 - 953.
    • Zhu, Q., et al. “Root Traits Explain Observed Tundra Vegetation Nitrogen Uptake Patterns: Implications For Trait-Based Land Models”. Journal Of Geophysical Research: Biogeosciences, 2016, pp. 3101 - 3112.
    • Zhu, Q., et al. “Root Traits Explain Observed Tundra Vegetation Nitrogen Uptake Patterns: Implications For Trait‐Based Land Models”. Journal Of Geophysical Research: Biogeosciences, 2016, pp. 3101 - 3112.
    • Walker, D. A., et al. “The Alaska Arctic Vegetation Archive (Ava-Ak)”. Phytocoenologia, 2016, pp. 221 - 229.

    2015

    • Treat, C. C., et al. “A Pan-Arctic Synthesis Of Methane And Carbon Dioxide Production From Anoxic Soil Incubations”. Global Change Biology, 2015, pp. 2787 - 2803.
    • Wullschleger, S. D., et al. “Genomics In A Changing Arctic: Critical Questions Await The Molecular Ecologist”. Molecular Ecology, 2015, pp. 2301 - 2309.
    • Heikoop, J. M., et al. “Isotopic Identification Of Soil And Permafrost Nitrate Sources In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1000 - 1017.
    • Warren, J. M., et al. “Root Structural And Functional Dynamics In Terrestrial Biosphere Models - Evaluation And Recommendations”. New Phytologist, 2015, pp. 59 - 78.
    • Iversen, C. M., et al. “The Unseen Iceberg: Plant Roots In Arctic Tundra”. New Phytologist, 2015, pp. 34 - 58.

    2014

    • Wullschleger, S. D., et al. “Plant Functional Types In Earth System Models: Past Experiences And Future Directions For Application Of Dynamic Vegetation Models In High-Latitude Ecosystems”. Annals Of Botany, 2014, pp. 1 - 16.
  • Philip Marsh

    2010

    • Rowland, J. C., et al. “Arctic Landscapes In Transition: Responses To Thawing Permafrost”. Eos, Transactions, American Geophysical Union, 2010, p. 229.
  • Charles E. Miller

    2021

    • Cawse-Nicholson, K., et al. “Nasa's Surface Biology And Geology Designated Observable: A Perspective On Surface Imaging Algorithms”. Remote Sensing Of Environment, 2021, p. 112349.

    2018

    • Parazoo, N. C., et al. “Detecting The Permafrost Carbon Feedback: Talik Formation And Increased Cold-Seasonrespiration As Precursors To Sink-To-Source Transitions”. The Cryosphere Discussions, 2018, pp. 1 - 44.
    • Fisher, J. B., et al. “Missing Pieces To Modeling The Arctic-Boreal Puzzle”. Environmental Research Letters, 2018, p. 020202.

    2016

    • Xu, X., et al. “A Multi-Scale Comparison Of Modeled And Observed Seasonal Methane Emissions In Northern Wetlands”. Biogeosciences, 2016, pp. 5043 - 5056.
    • Parazoo, N. C., et al. “Detecting Regional Patterns Of Changing Co 2 Flux In Alaska”. Proceedings Of The National Academy Of Sciences, 2016, pp. 7733 - 7738.
  • Isla H. Myers-Smith

    2022

    • Curasi, S. R., et al. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gains”. Environmental Research Letters, 2022, p. 045024.

    2021

    • Mekonnen, Z. A., et al. “Arctic Tundra Shrubification: A Review Of Mechanisms And Impacts On Ecosystem Carbon Balance”. Environmental Research Letters, 2021, p. 053001.
    • Kropp, H., et al. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters, 2021, p. 015001.

    2017

    • Walker, A. P., et al. “Trait Covariance: The Functional Warp Of Plant Diversity?”. New Phytologist, 2017, pp. 976-980.
  • Alistair Rogers

    2022

    • Lamour, J., et al. “New Calculations For Photosynthesis Measurement Systems: What's The Impact For Physiologists And Modelers?”. New Phytologist, 2022, pp. 592 - 598.
    • Rogers, A., et al. “Reducing Model Uncertainty Of Climate Change Impacts On High Latitude Carbon Assimilation”. Global Change Biology, 2022, pp. 1222 - 1247.

    2021

    • Burnett, A. C., et al. “A Best-Practice Guide To Predicting Plant Traits From Leaf-Level Hyperspectral Data Using Partial Least Squares Regression”. Journal Of Experimental Botany, 2021, pp. 6175 - 6189.
    • Ely, K. S., et al. “A Reporting Format For Leaf-Level Gas Exchange Data And Metadata”. Ecological Informatics, 2021, p. 101232.
    • Rogers, A., et al. “Triose Phosphate Utilization Limitation: An Unnecessary Complexity In Terrestrial Biosphere Model Representation Of Photosynthesis”. New Phytologist, 2021.

    2020

    • Iversen, C. M., et al. “Building A Culture Of Safety And Trust In Team Science”. Eos, 2020.

    2019

    • Serbin, S. P., et al. “From The Arctic To The Tropics: Multibiome Prediction Of Leaf Mass Per Area Using Leaf Reflectance”. New Phytologist, 2019, pp. 1557-1568.
    • Kumarathunge, D. P., et al. “No Evidence For Triose Phosphate Limitation Of Light‐Saturated Leaf Photosynthesis Under Current Atmospheric Carbon Dioxide Concentration”. Plant, Cell & Environment, 2019, pp. 3241 - 3252.
    • Rogers, A., et al. “Terrestrial Biosphere Models May Overestimate Arctic Carbon Dioxide Assimilation If They Do Not Account For Decreased Quantum Yield And Convexity At Low Temperature”. New Phytologist, 2019, pp. 167 - 179.
    • Burnett, A. C., et al. “The “One‐Point Method” For Estimating Maximum Carboxylation Capacity Of Photosynthesis: A Cautionary Tale”. Plant, Cell & Environment, 2019, pp. 2472 - 2481.

    2018

    • Lombardozzi, D. L., et al. “Triose Phosphate Limitation In Photosynthesis Models Reduces Leaf Photosynthesis And Global Terrestrial Carbon Storage”. Environmental Research Letters, 2018, p. 074025.

    2017

    • Ghimire, B., et al. “A Global Trait-Based Approach To Estimate Leaf Nitrogen Functional Allocation From Observations”. Ecological Applications, 2017, pp. 1421-1434.
    • Rogers, A., et al. “A Roadmap For Improving The Representation Of Photosynthesis In Earth System Models”. New Phytologist, 2017, pp. 22 - 42.
    • Lewin, K. F., et al. “A Zero-Power Warming Chamber For Investigating Plant Responses To Rising Temperature”. Biogeosciences, 2017, pp. 4071 - 4083.
    • Rogers, A., et al. “Terrestrial Biosphere Models Underestimate Photosynthetic Capacity And Carbon Dioxide Assimilation In The Arctic”. New Phytologist, 2017, pp. 1090 - 1103.

    2016

    • Ali, A. A., et al. “A Global Scale Mechanistic Model Of Photosynthetic Capacity (Luna V1.0)”. Geoscientific Model Development, 2016, pp. 587 - 606.
    • De Kauwe, M. G., et al. “A Test Of The ‘One-Point Method’ For Estimating Maximum Carboxylation Capacity From Field-Measured, Light-Saturated Photosynthesis”. New Phytologist, 2016, pp. 1130 - 1144.

    2015

    • Ali, A. A., et al. “Global-Scale Environmental Control Of Plant Photosynthetic Capacity”. Ecological Applications, 2015, pp. 2349 - 2365.
    • Lin, Y. -S., et al. “Optimal Stomatal Behaviour Around The World”. Nature Climate Change, 2015, pp. 459 - 464.

    2014

    • Rogers, A., et al. “Improving Representation Of Photosynthesis In Earth System Models”. New Phytologist, 2014, pp. 12 - 14.
    • Rogers, A. “The Use And Misuse Of Vc,Max In Earth System Models”. Photosynthesis Research, 2014, pp. 15 - 29.
  • Joel C. Rowland

    2021

    • Glade, R. C., et al. “Arctic Soil Patterns Analogous To Fluid Instabilities”. Proceedings Of The National Academy Of Sciences, 2021.

    2017

    • Shelef, E., et al. “Large Uncertainty In Permafrost Carbon Stocks Due To Hillslope Soil Deposits”. Geophysical Research Letters, 2017, pp. 6134-6144.

    2016

    • Harp, D. R., et al. “Effect Of Soil Property Uncertainties On Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, 2016, pp. 341 - 358.
    • Rowland, J. C., and E. T. Coon. “From Documentation To Prediction: How Remote Sensing And Mechanistic Modeling Are Raising The Bar For Thermokarst Research.”. Hydrogeology Journal, 2016, pp. 645 - 648.

    2014

    • Gangodagamage, C., et al. “Extrapolating Active Layer Thickness Measurements Across Arctic Polygonal Terrain Using Lidar And Ndvi Data Sets”. Water Resources Research, 2014, pp. 6339 - 6357.
    • Moody, D. I., et al. “Land Cover Classification In Multispectral Imagery Using Clustering Of Sparse Approximations Over Learned Feature Dictionaries”. Journal Of Applied Remote Sensing, 2014, p. 084793.

    2013

    • Skurikhin, A. N., et al. “Arctic Tundra Ice-Wedge Landscape Characterization By Active Contours Without Edges And Structural Analysis Using High-Resolution Satellite Imagery”. Remote Sensing Letters, 2013, pp. 1077 - 1086.
    • Hubbard, S. S., et al. “Quantifying And Relating Land-Surface And Subsurface Variability In Permafrost Environments Using Lidar And Surface Geophysical Datasets”. Hydrogeology Journal, 2013, pp. 149 - 169.

    2012

    • Lewis, K. C., et al. “Drainage Subsidence Associated With Arctic Permafrost Degradation”. Journal Of Geophysical Research, 2012.

    2011

    • Rowland, J. C., et al. “The Role Of Advective Heat Transport In Talik Development Beneath Lakes And Ponds In Discontinuous Permafrost”. Geophysical Research Letters, 2011.

    2010

    • Rowland, J. C., et al. “Arctic Landscapes In Transition: Responses To Thawing Permafrost”. Eos, Transactions, American Geophysical Union, 2010, p. 229.
  • Verity G. Salmon

    2022

    • McCaully, R. E., et al. “High Temporal And Spatial Variability Of Nitrate On An Alaskan Hillslope Dominated By Alder Shrubs”. The Cryosphere, 2022.

    2021

    • Euskirchen, E. S., et al. “Assessing Dynamic Vegetation Model Parameter Uncertainty Across Alaskan Arctic Tundra Plant Communities”. Ecological Applications, 2021.
    • Sulman, B. N., et al. “Integrating Arctic Plant Functional Types In A Land Surface Model Using Above‐ And Belowground Field Observations”. Journal Of Advances In Modeling Earth Systems, 2021.
    • Yang, D., et al. “Landscape-Scale Characterization Of Arctic Tundra Vegetation Composition, Structure, And Function With A Multi-Sensor Unoccupied Aerial System”. Environmental Research Letters, 2021, p. 085005.
    • Kropp, H., et al. “Shallow Soils Are Warmer Under Trees And Tall Shrubs Across Arctic And Boreal Ecosystems”. Environmental Research Letters, 2021, p. 015001.
    • Mekonnen, Z. A., et al. “Topographical Controls On Hillslope‐Scale Hydrology Drive Shrub Distributions On The Seward Peninsula, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2021.

    2020

    • Yang, D., et al. “A Multi-Sensor Unoccupied Aerial System Improves Characterization Of Vegetation Composition And Canopy Properties In The Arctic Tundra”. Remote Sensing, 2020, p. 2638.

    2019

    • Salmon, V. G., et al. “Alder Distribution And Expansion Across A Tundra Hillslope: Implications For Local N Cycling”. Frontiers In Plant Science, 2019.

    2017

    • Mauritz, M., et al. “Nonlinear Carbon Dioxide Flux Response To 7 Years Of Experimentally Induced Permafrost Thaw”. Global Change Biology, 2017, pp. 3646–3666.
  • Peter E. Thornton

    2021

    • Sulman, B. N., et al. “Integrating Arctic Plant Functional Types In A Land Surface Model Using Above‐ And Belowground Field Observations”. Journal Of Advances In Modeling Earth Systems, 2021.

    2019

    • Salmon, V. G., et al. “Alder Distribution And Expansion Across A Tundra Hillslope: Implications For Local N Cycling”. Frontiers In Plant Science, 2019.
    • Wang, Y., et al. “Mechanistic Modeling Of Microtopographic Impacts On Carbon Dioxide And Methane Fluxes In An Alaskan Tundra Ecosystem Using The Clm‐Microbe Model”. Journal Of Advances In Modeling Earth Systems, 2019, p. 17.
    • Zheng, J., et al. “Modeling Anaerobic Soil Organic Carbon Decomposition In Arctic Polygon Tundra: Insights Into Soil Geochemical Influences On Carbon Mineralization”. Biogeosciences, 2019, pp. 663 - 680.

    2017

    • Xu, X., et al. “Global Pattern And Controls Of Soil Microbial Metabolic Quotient”. Ecological Monographs, 2017, pp. 429-441.

    2016

    • Tang, G., et al. “Addressing Numerical Challenges In Introducing A Reactive Transport Code Into A Land Surface Model: A Biogeochemical Modeling Proof-Of-Concept With Clm–Pflotran 1.0”. Geoscientific Model Development, 2016, pp. 927 - 946.
    • Tang, G., et al. “Biogeochemical Model Of Carbon Dioxide And Methane Production In Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1 - 31.
    • Kumar, J., et al. “Modeling The Spatiotemporal Variability In Subsurface Thermal Regimes Across A Low-Relief Polygonal Tundra Landscape”. The Cryosphere, 2016, pp. 2241 - 2274.
    • Xu, X., et al. “Reviews And Syntheses: Four Decades Of Modeling Methane Cycling In Terrestrial Ecosystems”. Biogeosciences, 2016, pp. 3735 - 3755.

    2015

    • Xu, X., et al. “A Microbial Functional Group-Based Module For Simulating Methane Production And Consumption: Application To An Incubated Permafrost Soil”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1315 - 1333.
    • Wullschleger, S. D., et al. “Leaf Respiration (Globresp) - Global Trait Database Supports Earth System Models”. New Phytologist, 2015, pp. 483 - 485.
  • Margaret S. Torn

    2021

    • Mekonnen, Z. A., et al. “Arctic Tundra Shrubification: A Review Of Mechanisms And Impacts On Ecosystem Carbon Balance”. Environmental Research Letters, 2021, p. 053001.
    • Wainwright, H. M., et al. “High-Resolution Spatio-Temporal Estimation Of Net Ecosystem Exchange In Ice-Wedge Polygon Tundra Using In Situ Sensors And Remote Sensing Data”. Land, 2021, p. 722.
    • Dengel, S., et al. “Influence Of Tundra Polygon Type And Climate Variability On Carbon Dioxide And Methane Fluxes Near Utqiagvik, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2021.
    • Watts, J. D., et al. “Soil Respiration Strongly Offsets Carbon Uptake In Alaska And Northwest Canada”. Environmental Research Letters, 2021, p. 084051.
    • Virkkala, A. -M., et al. “Statistical Upscaling Of Ecosystem Carbon Dioxide Fluxes Across The Terrestrial Tundra And Boreal Domain: Regional Patterns And Uncertainties”. Global Change Biology, 2021, pp. 4040 - 4059.

    2020

    • Lehmann, J., et al. “Persistence Of Soil Organic Carbon Caused By Functional Complexity”. Nature Geoscience, 2020, pp. 529 - 534.

    2019

    • Arora, B., et al. “Evaluating Temporal Controls On Greenhouse Gas (Ghg) Fluxes In An Arctic Tundra Environment: An Entropy-Based Approach”. Science Of The Total Environment, 2019, pp. 284 - 299.
    • Wang, Y., et al. “Mechanistic Modeling Of Microtopographic Impacts On Carbon Dioxide And Methane Fluxes In An Alaskan Tundra Ecosystem Using The Clm‐Microbe Model”. Journal Of Advances In Modeling Earth Systems, 2019, p. 17.
    • Grant, R. F., et al. “Modeling Climate Change Impacts On An Arctic Polygonal Tundra: 2. Changes In Carbon Dioxide And Methane Exchange Depend On Rates Of Permafrost Thaw As Affected By Changes In Vegetation And Drainage”. Journal Of Geophysicalresearch: Biogeosciences, 2019, pp. 1323 - 1341.

    2018

    • Taş, N., et al. “Landscape Topography Structures The Soil Microbiome In Arctic Polygonal Tundra”. Nature Communications, 2018.

    2017

    • Raz-Yaseef, N., et al. “Evapotranspiration Across Plant Types And Geomorphological Units In Polygonal Arctic Tundra”. Journal Of Hydrology, 2017, pp. 816-825.
    • Raz-Yaseef, N., et al. “Large Carbon Dioxide And Methane Emissions From Polygonal Tundra During Spring Thaw In Northern Alaska”. Geophysical Research Letters, 2017, pp. 504 - 513.
    • Grant, R. F., et al. “Mathematical Modeling Of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond To Changes In Temperature And Precipitation”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 3161-3173.
    • Grant, R. F., et al. “Mathematical Modeling Of Arctic Polygonal Tundra With Ecosys: 2. Microtopography Determines How Carbon Dioxide And Methane Exchange Responds To Changes In Temperature And Precipitation”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 3174-3187.
    • Dwivedi, D., et al. “Mineral Properties, Microbes, Transport, And Plant-Input Profiles Control Vertical Distribution And Age Of Soil Carbon Stocks”. Soil Biology And Biochemistry, 2017, pp. 244 - 259.

    2016

    • Xu, X., et al. “A Multi-Scale Comparison Of Modeled And Observed Seasonal Methane Emissions In Northern Wetlands”. Biogeosciences, 2016, pp. 5043 - 5056.
    • Vaughn, L. J. S., et al. “Isotopic Insights Into Methane Production, Oxidation, And Emissions In Arctic Polygon Tundra”. Global Change Biology, 2016, pp. 3487 - 3502.

    2015

    • Wainwright, H. M., et al. “Identifying Multiscale Zonation And Assessing The Relative Importance Of Polygon Geomorphology On Carbon Fluxes In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 788 - 808.
    • Throckmorton, H. M., et al. “Pathways And Transformations Of Dissolved Methane And Dissolved Inorganic Carbon In Arctic Tundra Watersheds: Evidence From Analysis Of Stable Isotopes”. Global Biogeochemical Cycles, 2015, pp. 1893 - 1910.

    2014

    • Riley, W. J., et al. “Long Residence Times Of Rapidly Decomposable Soil Organic Matter: Application Of A Multi-Phase, Multi-Component, And Vertically Resolved Model (Bams1) To Soil Carbon Dynamics”. Geoscientific Model Development, 2014, pp. 1335 - 1355.
  • Terri Velliquette

    2015

    • Devarakonda, R., et al. “Use Of A Metadata Documentation And Search Tool For Large Data Volumes: The Ngee Arctic Example”. 2015 Ieee International Conference On Big Data (Big Data), 2015.
  • Stan D. Wullschleger

    2022

    • Conroy, N. A., et al. “Chemostatic Concentration–Discharge Behaviour Observed In A Headwater Catchment Underlain With Discontinuous Permafrost”. Hydrological Processes, 2022.
    • McCaully, R. E., et al. “High Temporal And Spatial Variability Of Nitrate On An Alaskan Hillslope Dominated By Alder Shrubs”. The Cryosphere, 2022.
    • Arendt, C. A., et al. “Increased Arctic No3− Availability As A Hydrogeomorphic Consequence Of Permafrost Degradation And Landscape Drying”. Nitrogen, 2022, pp. 314 - 332.
    • Zheng, J., et al. “Quantifying Ph Buffering Capacity In Acidic, Organic-Rich Arctic Soils: Measurable Proxies And Implications For Soil Carbon Degradation”. Geoderma, 2022, p. 116003.
    • Curasi, S. R., et al. “Range Shifts In A Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses And Gains”. Environmental Research Letters, 2022, p. 045024.
    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.
    • Zhang, L., et al. “Unravelling Biogeochemical Drivers Of Methylmercury Production In An Arctic Fen Soil And A Bog Soil”. Environmental Pollution, 2022, p. 118878.

    2021

    • Ely, K. S., et al. “A Reporting Format For Leaf-Level Gas Exchange Data And Metadata”. Ecological Informatics, 2021, p. 101232.
    • Roy_Chowdhury, T., et al. “Temporal, Spatial, And Temperature Controls On Organic Carbon Mineralization And Methanogenesis In Arctic High-Centered Polygon Soilsdata_Sheet_1.Docx”. Frontiers In Microbiology, 2021.
    • Ladd, M. P., et al. “Untargeted Exometabolomics Provides A Powerful Approach To Investigate Biogeochemical Hotspots With Vegetation And Polygon Type In Arctic Tundra Soils”. Soil Systems, 2021, p. 10.

    2020

    • Philben, M. J., et al. “Anaerobic Respiration Pathways And Response To Increased Substrate Availability Of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, 2020, pp. 2070 - 2083.
    • Iversen, C. M., et al. “Building A Culture Of Safety And Trust In Team Science”. Eos, 2020.
    • Krassovski, M. B., et al. “Hybrid-Energy Module For Remote Environmental Observations, Instruments, And Communications”. Advances In Polar Science , 2020, pp. 156-166.
    • Philben, M. J., et al. “Influences Of Hillslope Biogeochemistry On Anaerobic Soil Organic Matter Decomposition In A Tundra Watershed”. Journal Of Geophysical Research: Biogeosciences, 2020.
    • Herndon, E. M., et al. “Iron And Iron-Bound Phosphate Accumulate In Surface Soils Of Ice-Wedge Polygons In Arctic Tundra”. Environmental Science: Processes & Impacts, 2020, pp. 1475 - 1490.
    • Lara, M. J., et al. “Local-Scale Arctic Tundra Heterogeneity Affects Regional-Scale Carbon Dynamics”. Nature Communications, 2020.
    • Conroy, N. A., et al. “Timing And Duration Of Hydrological Transitions In Arctic Polygonal Ground From Stable Isotopes”. Hydrological Processes, 2020, pp. 749-764.
    • Conroy, N. A., et al. “Timing And Duration Of Hydrological Transitions In Arctic Polygonal Ground From Stable Isotopes”. Hydrological Processes, 2020, pp. 749 - 764.
    • Wales, N. A., et al. “Understanding The Relative Importance Of Vertical And Horizontal Flow In Ice-Wedge Polygons”. Hydrology And Earth System Sciences, 2020, pp. 1109-1129.

    2019

    • Salmon, V. G., et al. “Alder Distribution And Expansion Across A Tundra Hillslope: Implications For Local N Cycling”. Frontiers In Plant Science, 2019.
    • Ladd, M. P., et al. “Evaluation Of An Untargeted Nano-Liquid Chromatography-Mass Spectrometry Approach To Expand Coverage Of Low Molecular Weight Dissolved Organic Matter In Arctic Soil”. Scientific Reports, 2019.
    • Herndon, E. M., et al. “Iron (Oxyhydr)Oxides Serve As Phosphate Traps In Tundra And Boreal Peat Soils”. Journal Of Geophysical Research: Biogeosciences, 2019, pp. 227 - 246.
    • Wang, Y., et al. “Mechanistic Modeling Of Microtopographic Impacts On Carbon Dioxide And Methane Fluxes In An Alaskan Tundra Ecosystem Using The Clm‐Microbe Model”. Journal Of Advances In Modeling Earth Systems, 2019, p. 17.
    • Zheng, J., et al. “Modeling Anaerobic Soil Organic Carbon Decomposition In Arctic Polygon Tundra: Insights Into Soil Geochemical Influences On Carbon Mineralization”. Biogeosciences, 2019, pp. 663 - 680.
    • Yang, Z., et al. “Temperature Sensitivity Of Mineral-Enzyme Interactions On The Hydrolysis Of Cellobiose And Indican By Beta-Glucosidase”. Science Of The Total Environment, 2019, pp. 1194 - 1201.
    • Rogers, A., et al. “Terrestrial Biosphere Models May Overestimate Arctic Carbon Dioxide Assimilation If They Do Not Account For Decreased Quantum Yield And Convexity At Low Temperature”. New Phytologist, 2019, pp. 167 - 179.

    2018

    • Jubb, A. M., et al. “Characterization Of Iron Oxide Nanoparticle Films At The Air–Water Interface In Arctic Tundra Waters”. Science Of The Total Environment, 2018, pp. 1460-1468.
    • Young-Robertson, J. M., et al. “Evaporation Dominates Evapotranspiration On Alaska’s Arctic Coastal Plain”. Arctic, Antarctic, And Alpine Research, 2018, p. e1435931.
    • Zheng, J., et al. “Impacts Of Temperature And Soil Characteristics On Methane Production And Oxidation In Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1 - 27.
    • Fisher, J. B., et al. “Missing Pieces To Modeling The Arctic-Boreal Puzzle”. Environmental Research Letters, 2018, p. 020202.
    • Chen, H., et al. “Molecular Insights Into Arctic Soil Organic Matter Degradation Under Warming”. Environmental Science & Technology, 2018, pp. 4555-4564.

    2017

    • Raz-Yaseef, N., et al. “Evapotranspiration Across Plant Types And Geomorphological Units In Polygonal Arctic Tundra”. Journal Of Hydrology, 2017, pp. 816-825.
    • Raz-Yaseef, N., et al. “Large Carbon Dioxide And Methane Emissions From Polygonal Tundra During Spring Thaw In Northern Alaska”. Geophysical Research Letters, 2017, pp. 504 - 513.
    • Yang, Z., et al. “Microbial Community And Functional Gene Changes In Arctic Tundra Soils In A Microcosm Warming Experiment”. Frontiers In Microbiology, 2017.
    • Wullschleger, S. D. “Profile: Stan D. Wullschleger”. New Phytologist, 2017, pp. 981 - 983.
    • Rogers, A., et al. “Terrestrial Biosphere Models Underestimate Photosynthetic Capacity And Carbon Dioxide Assimilation In The Arctic”. New Phytologist, 2017, pp. 1090 - 1103.
    • Walker, A. P., et al. “Trait Covariance: The Functional Warp Of Plant Diversity?”. New Phytologist, 2017, pp. 976-980.

    2016

    • Ali, A. A., et al. “A Global Scale Mechanistic Model Of Photosynthetic Capacity (Luna V1.0)”. Geoscientific Model Development, 2016, pp. 587 - 606.
    • Throckmorton, H. M., et al. “Active Layer Hydrology In An Arctic Tundra Ecosystem: Quantifying Water Sources And Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016.
    • Yang, Z., et al. “Effects Of Warming On The Degradation And Production Of Low-Molecular-Weight Labile Organic Carbon In An Arctic Tundra Soil”. Soil Biology And Biochemistry, 2016, pp. 202 - 211.
    • Langford, Z. L., et al. “Mapping Arctic Plant Functional Type Distributions In The Barrow Environmental Observatory Using Worldview-2 And Lidar Datasets”. Remote Sensing, 2016, p. 733.
    • Xu, X., et al. “Reviews And Syntheses: Four Decades Of Modeling Methane Cycling In Terrestrial Ecosystems”. Biogeosciences, 2016, pp. 3735 - 3755.
    • Yang, Z., et al. “Warming Increases Methylmercury Production In An Arctic Soil”. Environmental Pollution, 2016, pp. 504 - 509.

    2015

    • Xu, X., et al. “A Microbial Functional Group-Based Module For Simulating Methane Production And Consumption: Application To An Incubated Permafrost Soil”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1315 - 1333.
    • Wullschleger, S. D., et al. “Genomics In A Changing Arctic: Critical Questions Await The Molecular Ecologist”. Molecular Ecology, 2015, pp. 2301 - 2309.
    • Herndon, E. M., et al. “Geochemical Drivers Of Organic Matter Decomposition In Arctic Tundra Soils”. Biogeochemistry, 2015, pp. 397 - 414.
    • Ali, A. A., et al. “Global-Scale Environmental Control Of Plant Photosynthetic Capacity”. Ecological Applications, 2015, pp. 2349 - 2365.
    • Mann, B. F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. Plos One, 2015.
    • Heikoop, J. M., et al. “Isotopic Identification Of Soil And Permafrost Nitrate Sources In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1000 - 1017.
    • Wullschleger, S. D., et al. “Leaf Respiration (Globresp) - Global Trait Database Supports Earth System Models”. New Phytologist, 2015, pp. 483 - 485.
    • Cohen, L. R., et al. “Measuring Diurnal Cycles Of Evapotranspiration In The Arctic With An Automated Chamber System”. Ecohydrology, 2015, pp. 652 - 659.
    • Newman, B. D., et al. “Microtopographic And Depth Controls On Active Layer Chemistry In Arctic Polygonal Ground”. Geophysical Research Letters, 2015, pp. 1808 - 1817.
    • Throckmorton, H. M., et al. “Pathways And Transformations Of Dissolved Methane And Dissolved Inorganic Carbon In Arctic Tundra Watersheds: Evidence From Analysis Of Stable Isotopes”. Global Biogeochemical Cycles, 2015, pp. 1893 - 1910.
    • Herndon, E. M., et al. “Pathways Of Anaerobic Organic Matter Decomposition In Tundra Soils From Barrow, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 2345 - 2359.
    • Warren, J. M., et al. “Root Structural And Functional Dynamics In Terrestrial Biosphere Models - Evaluation And Recommendations”. New Phytologist, 2015, pp. 59 - 78.
    • Weston, D. J., et al. “Sphagnum Physiology In The Context Of Changing Climate: Emergent Influences Of Genomics, Modelling And Host-Microbiome Interactions On Understanding Ecosystem Function”. Plant, Cell & Environment, 2015, pp. 1737 - 1751.
    • RoyChowdhury, T., et al. “Stoichiometry And Temperature Sensitivity Of Methanogenesis And Co2 Production From Saturated Polygonal Tundra In Barrow, Alaska”. Global Change Biology, 2015, pp. 722 - 737.
    • Iversen, C. M., et al. “The Unseen Iceberg: Plant Roots In Arctic Tundra”. New Phytologist, 2015, pp. 34 - 58.
    • Devarakonda, R., et al. “Use Of A Metadata Documentation And Search Tool For Large Data Volumes: The Ngee Arctic Example”. 2015 Ieee International Conference On Big Data (Big Data), 2015.

    2014

    • Gangodagamage, C., et al. “Extrapolating Active Layer Thickness Measurements Across Arctic Polygonal Terrain Using Lidar And Ndvi Data Sets”. Water Resources Research, 2014, pp. 6339 - 6357.
    • Wullschleger, S. D., et al. “Plant Functional Types In Earth System Models: Past Experiences And Future Directions For Application Of Dynamic Vegetation Models In High-Latitude Ecosystems”. Annals Of Botany, 2014, pp. 1 - 16.
    • Hayes, D. J., et al. “The Impacts Of Recent Permafrost Thaw On Land–Atmosphere Greenhouse Gas Exchange”. Environmental Research Letters, 2014, p. 045005.

    2013

    • Hubbard, S. S., et al. “Quantifying And Relating Land-Surface And Subsurface Variability In Permafrost Environments Using Lidar And Surface Geophysical Datasets”. Hydrogeology Journal, 2013, pp. 149 - 169.
    • Wu, Y., et al. “Remote Monitoring Of Freeze–Thaw Transitions In Arctic Soils Using The Complex Resistivity Method”. Vadose Zone Journal, 2013.

    2012

    • Lee, H., et al. “Enhancing Terrestrial Ecosystem Sciences By Integrating Empirical Modeling Approaches”. Eos, Transactions, American Geophysical Union, 2012, pp. 237 - 237.
    • McCarthy, H. R., et al. “Integrating Empirical-Modeling Approaches To Improve Understanding Of Terrestrial Ecology Processes”. New Phytologist, 2012, pp. 523 - 525.
    • Graham, D. E., et al. “Microbes In Thawing Permafrost: The Unknown Variable In The Climate Change Equation”. The Isme Journal, 2012, pp. 709 - 712.
    • Xu, C., et al. “Toward A Mechanistic Modeling Of Nitrogen Limitation On Vegetation Dynamics”. Plos One, 2012, p. e37914.

    2011

    • Hanson, P. J., et al. “A Method For Experimental Heating Of Intact Soil Profiles For Application To Climate Change Experiments”. Global Change Biology, 2011, pp. 1083 - 1096.
    • Xu, C., et al. “Importance Of Feedback Loops Between Soil Inorganic Nitrogen And Microbial Communities In The Heterotrophic Soil Respiration Response To Global Warming”. Nature Reviews Microbiology, 2011, pp. 222 - 222.
    • Wullschleger, S. D., et al. “Planning The Next Generation Of Arctic Ecosystem Experiments”. Eos, Transactions, American Geophysical Union, 2011, p. 145.

    2010

    • Wullschleger, S. D., and M. Strahl. “Climate Change: A Controlled Experiment”. Scientific American, 2010, pp. 78 - 83.