Open Researcher and Contributor ID (ORCID)
Web of Science
2022
- Conroy, Nathan Alec, et al. “Chemostatic concentration–discharge Behaviour Observed in a Headwater Catchment Underlain With Discontinuous Permafrost”. Hydrological Processes, vol. 36, no. 5, 2022, https://doi.org/10.1002/hyp.v36.510.1002/hyp.14591.
- McCaully, Rachel E., et al. “High Temporal and Spatial Variability of Nitrate on an Alaskan Hillslope Dominated by Alder Shrubs”. The Cryosphere, 2022, https://doi.org/10.5194/tc-2021-166.
- Arendt, Carli A., et al. “Increased Arctic NO3− Availability As a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying”. Nitrogen, vol. 3, no. 2, 2022, pp. 314-32, https://doi.org/10.3390/nitrogen3020021.
- Zheng, Jianqiu, et al. “Quantifying PH Buffering Capacity in Acidic, Organic-Rich Arctic Soils: Measurable Proxies and Implications for Soil Carbon Degradation”. Geoderma, vol. 424, 2022, p. 116003, https://doi.org/10.1016/j.geoderma.2022.116003.
- Curasi, Salvatore R., et al. “Range Shifts in a Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses and Gains”. Environmental Research Letters, vol. 17, no. 4, 2022, p. 045024, https://doi.org/10.1088/1748-9326/ac6005.
- Bennett, Katrina E., et al. “Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic”. The Cryosphere, 2022, https://doi.org/https://doi.org/10.5194/tc-2021-341.
- Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.
2021
- Ely, Kim S., et al. “A Reporting Format for Leaf-Level Gas Exchange Data and Metadata”. Ecological Informatics, vol. 61, 2021, p. 101232, https://doi.org/10.1016/j.ecoinf.2021.101232.
- Roy_Chowdhury, Taniya, et al. “Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon SoilsData_Sheet_1.Docx”. Frontiers in Microbiology, vol. 11, 2021, https://doi.org/10.3389/fmicb.2020.61651810.3389/fmicb.2020.616518.s001.
- Ladd, Mallory P., et al. “Untargeted Exometabolomics Provides a Powerful Approach to Investigate Biogeochemical Hotspots With Vegetation and Polygon Type in Arctic Tundra Soils”. Soil Systems, vol. 5, no. 1, 2021, p. 10, https://doi.org/10.3390/soilsystems5010010.
2020
- Philben, Michael J., et al. “Anaerobic Respiration Pathways and Response to Increased Substrate Availability of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, vol. 22, no. 10, 2020, pp. 2070-83, https://doi.org/10.1039/D0EM00124D.
- Iversen, Colleen M., et al. “Building a Culture of Safety and Trust in Team Science”. Eos, vol. 101, 2020, https://doi.org/10.1029/2020EO143064.
- Krassovski, Misha B., et al. “Hybrid-Energy Module for Remote Environmental Observations, Instruments, and Communications”. Advances in Polar Science , vol. 31, no. 3, 2020, pp. 156-6, https://doi.org/10.13679/j.advps.2020.0008.
- Philben, Michael J., et al. “Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 125, no. 7, 2020, https://doi.org/10.1029/2019JG005512.
- Herndon, Elizabeth M., et al. “Iron and Iron-Bound Phosphate Accumulate in Surface Soils of Ice-Wedge Polygons in Arctic Tundra”. Environmental Science: Processes & Impacts, vol. 22, no. 7, 2020, pp. 1475-90, https://doi.org/10.1039/D0EM00142B.
- Lara, Mark J., et al. “Local-Scale Arctic Tundra Heterogeneity Affects Regional-Scale Carbon Dynamics”. Nature Communications, vol. 11, no. 1, 2020, https://doi.org/10.1038/s41467-020-18768-z.
- Conroy, Nathan Alec, et al. “Timing and Duration of Hydrological Transitions in Arctic Polygonal Ground from Stable Isotopes”. Hydrological Processes, vol. 34, 2020, pp. 749-64, https://doi.org/10.1002/hyp.13623.
- Conroy, Nathan Alec, et al. “Timing and Duration of Hydrological Transitions in Arctic Polygonal Ground from Stable Isotopes”. Hydrological Processes, vol. 34, no. 3, 2020, pp. 749-64, https://doi.org/10.1002/hyp.13623.
- Wales, Nathan A., et al. “Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons”. Hydrology and Earth System Sciences, vol. 24, no. 3, 2020, pp. 1109-2, https://doi.org/10.5194/hess-24-1109-2020.
2019
- Salmon, Verity G., et al. “Alder Distribution and Expansion across a Tundra Hillslope: Implications for Local N Cycling”. Frontiers in Plant Science, vol. 10, 2019, https://doi.org/10.3389/fpls.2019.01099.
- Ladd, Mallory P., et al. “Evaluation of an Untargeted Nano-Liquid Chromatography-Mass Spectrometry Approach to Expand Coverage of Low Molecular Weight Dissolved Organic Matter in Arctic Soil”. Scientific Reports, vol. 9, no. 1, 2019, https://doi.org/10.1038/s41598-019-42118-9.
- Herndon, Elizabeth M., et al. “Iron (oxyhydr)oxides Serve As Phosphate Traps in Tundra and Boreal Peat Soils”. Journal of Geophysical Research: Biogeosciences, vol. 124, no. 2, 2019, pp. 227-46, https://doi.org/10.1029/2018JG004776.
- Wang, Yihui, et al. “Mechanistic Modeling of Microtopographic Impacts on Carbon Dioxide and Methane Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model”. Journal of Advances in Modeling Earth Systems, vol. 11, 2019, p. 17, https://doi.org/10.1029/2019MS001771.
- Zheng, Jianqiu, et al. “Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization”. Biogeosciences, vol. 16, no. 3, 2019, pp. 663-80, https://doi.org/10.5194/bg-16-663-2019.
- Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.
- Rogers, Alistair, et al. “Terrestrial Biosphere Models May Overestimate Arctic Carbon Dioxide Assimilation If They Do Not Account for Decreased Quantum Yield and Convexity at Low Temperature”. New Phytologist, vol. 223, no. 223, 2019, pp. 167-79, https://doi.org/10.1111/nph.15750.
2018
- Jubb, Aaron M., et al. “Characterization of Iron Oxide Nanoparticle Films at the air–water Interface in Arctic Tundra Waters”. Science of The Total Environment, vol. 633, 2018, pp. 1460-8, https://doi.org/10.1016/j.scitotenv.2018.03.332.
- Young-Robertson, Jessica M., et al. “Evaporation Dominates Evapotranspiration on Alaska’s Arctic Coastal Plain”. Arctic, Antarctic, and Alpine Research, vol. 50, no. 1, 2018, p. e1435931, https://doi.org/10.1080/15230430.2018.1435931.
- Zheng, Jianqiu, et al. “Impacts of Temperature and Soil Characteristics on Methane Production and Oxidation in Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1-27, https://doi.org/10.5194/bg-2017-56610.5194/bg-2017-566-supplement10.5194/bg-2017-566-RC110.5194/bg-2017-566-RC210.5194/bg-2017-566-AC110.5194/bg-2017-566-AC2.
- Fisher, Joshua B., et al. “Missing Pieces to Modeling the Arctic-Boreal Puzzle”. Environmental Research Letters, vol. 13, no. 2, 2018, p. 020202, https://doi.org/10.1088/1748-9326/aa9d9a.
- Chen, Hongmei, et al. “Molecular Insights into Arctic Soil Organic Matter Degradation under Warming”. Environmental Science & Technology, vol. 52, no. 8, 2018, pp. 4555-64, https://doi.org/10.1021/acs.est.7b05469.
2017
- Raz-Yaseef, Naama, et al. “Evapotranspiration across Plant Types and Geomorphological Units in Polygonal Arctic Tundra”. Journal of Hydrology, vol. 553, 2017, pp. 816-25, https://doi.org/10.1016/j.jhydrol.2017.08.036.
- Raz-Yaseef, Naama, et al. “Large Carbon Dioxide and Methane Emissions from Polygonal Tundra During Spring Thaw in Northern Alaska”. Geophysical Research Letters, vol. 44, no. 1, 2017, pp. 504-13, https://doi.org/10.1002/2016GL071220.
- Yang, Ziming, et al. “Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment”. Frontiers in Microbiology, vol. 27, no. 3, 2017, https://doi.org/10.3389/fmicb.2017.01741.
- Wullschleger, Stan D. “Profile: Stan D. Wullschleger”. New Phytologist, vol. 216210160, no. 4, 2017, pp. 981-3, https://doi.org/10.1111/nph.14869.
- Rogers, Alistair, et al. “Terrestrial Biosphere Models Underestimate Photosynthetic Capacity and Carbon Dioxide Assimilation in the Arctic”. New Phytologist, vol. 216: 1090-1103, no. 4, 2017, pp. 1090-03, https://doi.org/10.1111/nph.14740.
- Walker, Anthony P., et al. “Trait Covariance: The Functional Warp of Plant Diversity?”. New Phytologist, vol. 216, no. 4, 2017, pp. 976-80, https://doi.org/10.1111/nph.14853.
2016
- Ali, Ashehad A., et al. “A Global Scale Mechanistic Model of Photosynthetic Capacity (LUNA V1.0)”. Geoscientific Model Development, vol. 9, no. 2, 2016, pp. 587-06, https://doi.org/10.5194/gmd-9-587-201610.5194/gmd-9-587-2016-supplement.
- Throckmorton, Heather M., et al. “Active Layer Hydrology in an Arctic Tundra Ecosystem: Quantifying Water Sources and Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016, https://doi.org/10.1002/hyp.10883.
- Yang, Ziming, et al. “Effects of Warming on the Degradation and Production of Low-Molecular-Weight Labile Organic Carbon in an Arctic Tundra Soil”. Soil Biology and Biochemistry, vol. 95, 2016, pp. 202-11, https://doi.org/10.1016/j.soilbio.2015.12.022.
- Langford, Zachary L., et al. “Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets”. Remote Sensing, vol. 8, no. 9, 2016, p. 733, https://doi.org/10.3390/rs8090733.
- Xu, Xiaofeng, et al. “Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems”. Biogeosciences, vol. 13, no. 12, 2016, pp. 3735-5, https://doi.org/10.5194/bg-13-3735-2016.
- Yang, Ziming, et al. “Warming Increases Methylmercury Production in an Arctic Soil”. Environmental Pollution, vol. 214, 2016, pp. 504-9, https://doi.org/10.1016/j.envpol.2016.04.069.
2015
- Xu, Xiaofeng, et al. “A Microbial Functional Group-Based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 7, 2015, pp. 1315-33, https://doi.org/10.1002/2015JG002935.
- Wullschleger, Stan D., et al. “Genomics in a Changing Arctic: Critical Questions Await the Molecular Ecologist”. Molecular Ecology, vol. 24, no. 10, 2015, pp. 2301-9, https://doi.org/10.1111/mec.13166.
- Herndon, Elizabeth M., et al. “Geochemical Drivers of Organic Matter Decomposition in Arctic Tundra Soils”. Biogeochemistry, vol. 126, no. 3, 2015, pp. 397-14, https://doi.org/10.1007/s10533-015-0165-5.
- Ali, Ashehad A., et al. “Global-Scale Environmental Control of Plant Photosynthetic Capacity”. Ecological Applications, vol. 25, no. 8, 2015, pp. 2349-65, https://doi.org/10.1890/14-2111.110.1890/14-2111.1.sm.
- Mann, Benjamin F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. PLOS ONE, vol. 10, no. 6, 2015, https://doi.org/10.1371/journal.pone.0130557.
- Heikoop, Jeffrey Martin, et al. “Isotopic Identification of Soil and Permafrost Nitrate Sources in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 6, 2015, pp. 1000-17, https://doi.org/10.1002/2014JG002883.
- Wullschleger, Stan D., et al. “Leaf Respiration (GlobResp) - Global Trait Database Supports Earth System Models”. New Phytologist, vol. 206, no. 2, 2015, pp. 483-5, https://doi.org/10.1111/nph.13364.
- Cohen, Lily R., et al. “Measuring Diurnal Cycles of Evapotranspiration in the Arctic With an Automated Chamber System”. Ecohydrology, vol. 8, no. 4, 2015, pp. 652-9, https://doi.org/10.1002/eco.1532.
- Newman, Brent D., et al. “Microtopographic and Depth Controls on Active Layer Chemistry in Arctic Polygonal Ground”. Geophysical Research Letters, vol. 42, no. 6, 2015, pp. 1808-17, https://doi.org/10.1002/2014GL062804.
- Throckmorton, Heather M., et al. “Pathways and Transformations of Dissolved Methane and Dissolved Inorganic Carbon in Arctic Tundra Watersheds: Evidence from Analysis of Stable Isotopes”. Global Biogeochemical Cycles, vol. 29, no. 11, 2015, pp. 1893-10, https://doi.org/10.1002/2014GB005044.
- Herndon, Elizabeth M., et al. “Pathways of Anaerobic Organic Matter Decomposition in Tundra Soils from Barrow, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 11, 2015, pp. 2345-59, https://doi.org/10.1002/2015JG003147.
- Warren, Jeffery M., et al. “Root Structural and Functional Dynamics in Terrestrial Biosphere Models - Evaluation and Recommendations”. New Phytologist, vol. 205, no. 1, 2015, pp. 59-78, https://doi.org/10.1111/nph.13034.
- Weston, David J., et al. “Sphagnum Physiology in the Context of Changing Climate: Emergent Influences of Genomics, Modelling and Host-Microbiome Interactions on Understanding Ecosystem Function”. Plant, Cell & Environment, vol. 38, no. 9, 2015, pp. 1737-51, https://doi.org/10.1111/pce.12458.
- RoyChowdhury, Taniya, et al. “Stoichiometry and Temperature Sensitivity of Methanogenesis and CO<sub>2< Sub> Production from Saturated Polygonal Tundra in Barrow, Alaska”. Global Change Biology, vol. 21, no. 2, 2015, pp. 722-37, https://doi.org/10.1111/gcb.12762.
- Iversen, Colleen M., et al. “The Unseen Iceberg: Plant Roots in Arctic Tundra”. New Phytologist, vol. 205, no. 1, 2015, pp. 34-58, https://doi.org/10.1111/nph.13003.
- Devarakonda, Ranjeet, et al. “Use of a Metadata Documentation and Search Tool for Large Data Volumes: The NGEE Arctic Example”. 2015 IEEE International Conference on Big Data (Big Data), 2015, https://doi.org/10.1109/BigData.2015.7364086.
2014
- Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
- Wullschleger, Stan D., et al. “Plant Functional Types in Earth System Models: Past Experiences and Future Directions for Application of Dynamic Vegetation Models in High-Latitude Ecosystems”. Annals of Botany, vol. 114, no. 1, 2014, pp. 1-16, https://doi.org/10.1093/aob/mcu077.
- Hayes, Daniel J., et al. “The Impacts of Recent Permafrost Thaw on land–atmosphere Greenhouse Gas Exchange”. Environmental Research Letters, vol. 9, no. 4, 2014, p. 045005, https://doi.org/10.1088/1748-9326/9/4/045005.
2013
- Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.
- Wu, Yuxin, et al. “Remote Monitoring of freeze–thaw Transitions in Arctic Soils Using the Complex Resistivity Method”. Vadose Zone Journal, vol. 12, no. 1, 2013, https://doi.org/10.2136/vzj2012.0062.
2012
- Lee, Hanna, et al. “Enhancing Terrestrial Ecosystem Sciences by Integrating Empirical Modeling Approaches”. Eos, Transactions, American Geophysical Union, vol. 93, no. 25, 2012, pp. 237-, https://doi.org/10.1029/2012EO250008.
- McCarthy, Heather R., et al. “Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes”. New Phytologist, vol. 195, no. 3, 2012, pp. 523-5, https://doi.org/10.1111/j.1469-8137.2012.04222.x.
- Graham, David E., et al. “Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation”. The ISME Journal, vol. 6, no. 4, 2012, pp. 709-12, https://doi.org/10.1038/ismej.2011.163.
- Xu, Chonggang, et al. “Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics”. PLOS ONE, vol. 7, no. 5, 2012, p. e37914, https://doi.org/10.1371/journal.pone.0037914.
2011
- Hanson, Paul J., et al. “A Method for Experimental Heating of Intact Soil Profiles for Application to Climate Change Experiments”. Global Change Biology, vol. 17, no. 2, 2011, pp. 1083-96, https://doi.org/10.1111/gcb.2010.17.issue-210.1111/j.1365-2486.2010.02221.x.
- Xu, Chonggang, et al. “Importance of Feedback Loops Between Soil Inorganic Nitrogen and Microbial Communities in the Heterotrophic Soil Respiration Response to Global Warming”. Nature Reviews Microbiology, vol. 9, no. 3, 2011, pp. 222-, https://doi.org/10.1038/nrmicro2439-c1.
- Wullschleger, Stan D., et al. “Planning the Next Generation of Arctic Ecosystem Experiments”. Eos, Transactions, American Geophysical Union, vol. 92, no. 17, 2011, p. 145, https://doi.org/10.1029/2011EO170006.