Publications

Displaying 61 - 80 of 102
By year of publication, then alphabetical by title
  1. Kumarathunge, Dushan P., et al. “No Evidence for Triose Phosphate Limitation of light‐saturated Leaf Photosynthesis under Current Atmospheric Carbon Dioxide Concentration”. Plant, Cell & Environment, vol. 42, no. 12, 2019, pp. 3241-52, https://doi.org/10.1111/pce.13639.
  2. Garayshin, V.V., et al. “Numerical Modeling of Two-Dimensional Temperature Field Dynamics across Non-Deforming Ice-Wedge Polygons”. Cold Regions Science and Technology, vol. 161, 2019, pp. 115-28, https://doi.org/10.1016/j.coldregions.2018.12.004.
  3. Vaughn, Lydia J. S. “Radiocarbon Evidence That Millennial and Fast-Cycling Soil Carbon Are Equally Sensitive to Warming”. Nature Climate Change, vol. 9, no. 6, 2019, pp. 467-71, https://doi.org/10.1038/s41558-019-0468-y.
  4. Gu, Xueying, et al. “Saturated Nitrous Oxide Emission Rates Occur above the Nitrogen Deposition Level Predicted for the Semi-Arid Grasslands of Inner Mongolia, China”. Geoderma, vol. 341, 2019, pp. 18-25, https://doi.org/10.1016/j.geoderma.2019.01.002.
  5. Muster, Sina, et al. “Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time”. Frontiers in Earth Science, vol. 7, 2019, https://doi.org/10.3389/feart.2019.00005.
  6. Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.
  7. Rogers, Alistair, et al. “Terrestrial Biosphere Models May Overestimate Arctic Carbon Dioxide Assimilation If They Do Not Account for Decreased Quantum Yield and Convexity at Low Temperature”. New Phytologist, vol. 223, no. 223, 2019, pp. 167-79, https://doi.org/10.1111/nph.15750.
  8. Burnett, Angela C., et al. “The ‘one‐point method’ for Estimating Maximum Carboxylation Capacity of Photosynthesis: A Cautionary Tale”. Plant, Cell & Environment, vol. 42, no. 8, 2019, pp. 2472-81, https://doi.org/10.1111/pce.13574.
  9. Thomas, H. J. D., et al. “Traditional Plant Functional Groups Explain Variation in Economic But Not size‐related Traits across the Tundra Biome”. Global Ecology and Biogeography, vol. 28, no. 2, 2019, pp. 78-95, https://doi.org/10.1111/geb.12783.
  10. Reuss-Schmidt, Kassandra, et al. “Understanding Spatial Variability of Methane Fluxes in Arctic Wetlands through Footprint Modelling”. Environmental Research Letters, vol. 14, no. 12, 2019, p. 125010, https://doi.org/10.1088/1748-9326/ab4d32.
  11. Bennett, Katrina E., et al. “Using MODIS Estimates of Fractional Snow Cover Area to Improve Streamflow Forecasts in Interior Alaska”. Hydrology and Earth System Sciences, vol. 23, no. 5, 2019, pp. 2439-5, https://doi.org/10.5194/hess-23-2439-2019.
  12. Xu, Xiaofeng, et al. “A Microbial Functional Group-Based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 7, 2015, pp. 1315-33, https://doi.org/10.1002/2015JG002935.
  13. Treat, Claire C., et al. “A Pan-Arctic Synthesis of Methane and Carbon Dioxide Production from Anoxic Soil Incubations”. Global Change Biology, vol. 21, no. 7, 2015, pp. 2787-03, https://doi.org/10.1111/gcb.12875.
  14. Koven, Charles D., et al. “A Simplified, Data-Constrained Approach to Estimate the Permafrost carbon–climate Feedback”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 373, no. 2054, 2015, https://doi.org/10.1098/rsta.2014.0423.
  15. Muskett, Reginald R., et al. “Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 through 2014”. International Journal of Geosciences, vol. 06, no. 01, 2015, pp. 12-41, https://doi.org/10.4236/ijg.2015.61002.
  16. Schuur, Edward A.G., et al. “Climate Change and the Permafrost Carbon Feedback”. Nature, vol. 520, no. 7546, 2015, pp. 171-9, https://doi.org/10.1038/nature14338.
  17. Wullschleger, Stan D., et al. “Genomics in a Changing Arctic: Critical Questions Await the Molecular Ecologist”. Molecular Ecology, vol. 24, no. 10, 2015, pp. 2301-9, https://doi.org/10.1111/mec.13166.
  18. Herndon, Elizabeth M., et al. “Geochemical Drivers of Organic Matter Decomposition in Arctic Tundra Soils”. Biogeochemistry, vol. 126, no. 3, 2015, pp. 397-14, https://doi.org/10.1007/s10533-015-0165-5.
  19. Ali, Ashehad A., et al. “Global-Scale Environmental Control of Plant Photosynthetic Capacity”. Ecological Applications, vol. 25, no. 8, 2015, pp. 2349-65, https://doi.org/10.1890/14-2111.110.1890/14-2111.1.sm.
  20. Muskett, Reginald R. “ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska”. International Journal of Geosciences, vol. 06, no. 10, 2015, pp. 1101-15, https://doi.org/10.4236/ijg.2015.610086.