Publications

Displaying 241 - 260 of 342
By year of publication, then alphabetical by title
  1. Olefeldt, David, et al. “Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes”. Nature Communications, vol. 7, 2016, p. 13043, https://doi.org/10.1038/ncomms13043.
  2. Euskirchen, Eugénie S., et al. “Consequences of Changes in Vegetation and Snow Cover for Climate Feedbacks in Alaska and Northwest Canada”. Environmental Research Letters, vol. 11, no. 10, 2016, https://doi.org/10.1088/1748-9326/11/10/105003.
  3. Parazoo, Nicholas C., et al. “Detecting Regional Patterns of Changing CO <sub>2< Sub> Flux in Alaska”. Proceedings of the National Academy of Sciences, vol. 113, no. 28, 2016, pp. 7733-8, https://doi.org/10.1073/pnas.1601085113.
  4. Harp, Dylan R., et al. “Effect of Soil Property Uncertainties on Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, vol. 10, no. 1, 2016, pp. 341-58, https://doi.org/10.5194/tc-10-341-201610.5194/tc-10-341-2016-supplement.
  5. Yang, Ziming, et al. “Effects of Warming on the Degradation and Production of Low-Molecular-Weight Labile Organic Carbon in an Arctic Tundra Soil”. Soil Biology and Biochemistry, vol. 95, 2016, pp. 202-11, https://doi.org/10.1016/j.soilbio.2015.12.022.
  6. Rowland, Joel C., and Ethan T. Coon. “From Documentation to Prediction: How Remote Sensing and Mechanistic Modeling Are Raising the Bar for Thermokarst Research”. Hydrogeology Journal, vol. 24, no. 3, 2016, pp. 645-8, https://doi.org/10.1007/s10040-015-1331-5.
  7. Iwahana, Go, et al. “Geomorphological and Geochemistry Changes in Permafrost After the 2002 Tundra Wildfire in Kougarok, Seward Peninsula, Alaska”. Journal of Geophysical Research: Earth Surface, vol. 121, no. 9, 2016, pp. 1697-15, https://doi.org/10.1002/2016JF003921.
  8. Dafflon, Baptiste, et al. “Geophysical Estimation of Shallow Permafrost Distribution and Properties in an Ice-Wedge Polygon-Dominated Arctic Tundra Region”. GEOPHYSICS, vol. 81, no. 1, 2016, pp. WA247 - WA263, https://doi.org/10.1190/geo2015-0175.1.
  9. Atchley, Adam L., et al. “Influences and Interactions of Inundation, Peat, and Snow on Active Layer Thickness”. Geophysical Research Letters, vol. 43, no. 10, 2016, pp. 5116-23, https://doi.org/10.1002/2016GL068550.
  10. Iwahana, Go, et al. “InSAR Detection and Field Evidence for Thermokarst After a Tundra Wildfire, Using ALOS-PALSAR”. Remote Sensing, vol. 8, no. 3, 2016, p. 218, https://doi.org/10.3390/rs8030218.
  11. Painter, Scott L., et al. “Integrated Surface Subsurface Permafrost Thermal Hydrology: Model Formulation and Proof-of-Concept Simulations”. Water Resources Research, vol. 52, no. 8, 2016, pp. 6062-77, https://doi.org/10.1002/2015WR018427.
  12. Vaughn, Lydia J. S., et al. “Isotopic Insights into Methane Production, Oxidation, and Emissions in Arctic Polygon Tundra”. Global Change Biology, vol. 22, no. 10, 2016, pp. 3487-02, https://doi.org/10.1111/gcb.2016.22.issue-1010.1111/gcb.13281.
  13. Coon, Ethan T., et al. “Managing Complexity in Simulations of Land Surface and Near-Surface Processes”. Environmental Modelling & Software, vol. 78, 2016, pp. 134-49, https://doi.org/10.1016/j.envsoft.2015.12.017.
  14. Langford, Zachary L., et al. “Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets”. Remote Sensing, vol. 8, no. 9, 2016, p. 733, https://doi.org/10.3390/rs8090733.
  15. Kumar, Jitendra, et al. “Modeling the Spatiotemporal Variability in Subsurface Thermal Regimes across a Low-Relief Polygonal Tundra Landscape”. The Cryosphere, vol. 10, no. 5, 2016, pp. 2241-74, https://doi.org/10.5194/tc-10-2241-2016.
  16. Liljedahl, Anna K., et al. “Pan-Arctic Ice-Wedge Degradation in Warming Permafrost and Its Influence on Tundra Hydrology”. Nature Geoscience, 2016, https://doi.org/10.1038/ngeo2674.
  17. Mackelprang, Rachel, et al. “Permafrost Meta-Omics and Climate Change”. Annual Review of Earth and Planetary Sciences, vol. 44, no. 1, 2016, pp. 439-62, https://doi.org/10.1146/annurev-earth-060614-105126.
  18. Schädel, Christina, et al. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils”. Nature Climate Change, vol. 6, no. 10, 2016, pp. 950-3, https://doi.org/10.1038/nclimate3054.
  19. Dafflon, Baptiste, et al. “Quantification of Arctic Soil and Permafrost Properties Using Ground Penetrating Radar”. 2016 16th International Conference on Ground Penetrating Radar (GPR) , 2016, https://doi.org/10.1109/ICGPR.2016.7572663.
  20. Ghimire, Bardan, et al. “Representing Leaf and Root Physiological Traits in CLM Improves Global Carbon and Nitrogen Cycling Predictions”. Journal of Advances in Modeling Earth Systems, vol. 8, no. 2, 2016, pp. 598-13, https://doi.org/10.1002/2015MS000538.