Publications

Displaying 21 - 40 of 75
By year of publication, then alphabetical by title
  1. Jan, Ahmad, and Scott L. Painter. “Permafrost Thermal Conditions Are Sensitive to Shifts in Snow Timing”. Environmental Research Letters, vol. 15, no. 8, 2020, p. 084026, https://doi.org/10.1088/1748-9326/ab8ec4.
  2. Lehmann, Johannes, et al. “Persistence of Soil Organic Carbon Caused by Functional Complexity”. Nature Geoscience, vol. 13, no. 8, 2020, pp. 529-34, https://doi.org/10.1038/s41561-020-0612-3.
  3. Schaefer, Kevin M., et al. “Potential Impacts of Mercury Released from Thawing Permafrost”. Nature Communications, vol. 11, no. 1, 2020, https://doi.org/10.1038/s41467-020-18398-5.
  4. Wang, Kang, et al. “Sensitivity Evaluation of the Kudryavtsev Permafrost Model”. Science of The Total Environment, vol. 720, 2020, p. 137538, https://doi.org/10.1016/j.scitotenv.2020.137538.
  5. Andresen, Christian G., et al. “Soil Moisture and Hydrology Projections of the Permafrost Region – a Model Intercomparison”. The Cryosphere, vol. 14, no. 2, 2020, pp. 445-59, https://doi.org/10.5194/tc-14-445-2020.
  6. Bergmann, Joana, et al. “The Fungal Collaboration Gradient Dominates the Root Economics Space in Plants”. Science Advances, vol. 6, no. 27, 2020, https://doi.org/10.1126/sciadv.aba3756.
  7. Andersen, Jeremiah K., et al. “The State of the Climate in 2019: The Arctic”. Bulletin of the American Meteorological Society, vol. 101, no. 8, 2020, pp. S239 - S286, https://doi.org/10.1175/BAMS-D-20-0086.1.
  8. Conroy, Nathan Alec, et al. “Timing and Duration of Hydrological Transitions in Arctic Polygonal Ground from Stable Isotopes”. Hydrological Processes, vol. 34, 2020, pp. 749-64, https://doi.org/10.1002/hyp.13623.
  9. Conroy, Nathan Alec, et al. “Timing and Duration of Hydrological Transitions in Arctic Polygonal Ground from Stable Isotopes”. Hydrological Processes, vol. 34, no. 3, 2020, pp. 749-64, https://doi.org/10.1002/hyp.13623.
  10. Kattge, Jens, et al. “TRY Plant Trait Database – Enhanced Coverage and Open Access”. Global Change Biology, vol. 26, 2020, pp. 119-88, https://doi.org/10.1111/gcb.14904.
  11. Collins, A. D., et al. “UAS LIDAR MAPPING OF AN ARCTIC TUNDRA WATERSHED: CHALLENGES AND OPPORTUNITIES”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIV-M-2-2020, 2020, pp. 1-8, https://doi.org/10.5194/isprs-archives-xliv-m-2-2020-1-2020.
  12. Wales, Nathan A., et al. “Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons”. Hydrology and Earth System Sciences, vol. 24, no. 3, 2020, pp. 1109-2, https://doi.org/10.5194/hess-24-1109-2020.
  13. Léger, Emmanuel, et al. “A Distributed Temperature Profiling Method for Assessing Spatial Variability in Ground Temperatures in a Discontinuous Permafrost Region of Alaska”. The Cryosphere, vol. 13, 2019, pp. 2853-67, https://doi.org/10.5194/tc-13-2853-2019.
  14. Tang, Jinyun Y., and William J. Riley. “A Theory of Effective Microbial Substrate Affinity Parameters in Variably Saturated Soils and an Example Application to Aerobic Soil Heterotrophic Respiration”. Journal of Geophysical Research: Biogeosciences, vol. 124, no. 4, 2019, pp. 918-40, https://doi.org/10.1029/2018JG004779.
  15. Dwivedi, Dipankar, et al. “Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists”. Reviews in Mineralogy and Geochemistry, vol. 85, no. 1, 2019, pp. 329-48, https://doi.org/10.2138/rmg.2019.85.11.
  16. Kumarathunge, Dushan P., et al. “Acclimation and Adaptation Components of the Temperature Dependence of Plant Photosynthesis at the Global Scale”. New Phytologist, vol. 222, no. 2, 2019, pp. 768-84, https://doi.org/10.1111/nph.15668.
  17. Salmon, Verity G., et al. “Alder Distribution and Expansion across a Tundra Hillslope: Implications for Local N Cycling”. Frontiers in Plant Science, vol. 10, 2019, https://doi.org/10.3389/fpls.2019.01099.
  18. Wieder, William R., et al. “Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon”. Geophysical Research Letters, vol. 46, no. 24, 2019, pp. 14486-95, https://doi.org/10.1029/2019GL085543.
  19. Langford, Zachary L., et al. “Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks”. Remote Sensing, vol. 11, no. 1, 2019, p. 69, https://doi.org/10.3390/rs11010069.
  20. Abolt, Charles J., et al. “Brief Communication: Rapid Machine-Learning-Based Extraction and Measurement of Ice Wedge Polygons in High-Resolution Digital Elevation Models”. The Cryosphere, vol. 13, no. 1, 2019, pp. 237-45, https://doi.org/10.5194/tc-13-237-2019.