Publications

Displaying 61 - 80 of 86
By year of publication, then alphabetical by title
  1. Kumarathunge, Dushan P., et al. “No Evidence for Triose Phosphate Limitation of light‐saturated Leaf Photosynthesis under Current Atmospheric Carbon Dioxide Concentration”. Plant, Cell & Environment, vol. 42, no. 12, 2019, pp. 3241-52, https://doi.org/10.1111/pce.13639.
  2. Garayshin, V.V., et al. “Numerical Modeling of Two-Dimensional Temperature Field Dynamics across Non-Deforming Ice-Wedge Polygons”. Cold Regions Science and Technology, vol. 161, 2019, pp. 115-28, https://doi.org/10.1016/j.coldregions.2018.12.004.
  3. Vaughn, Lydia J. S. “Radiocarbon Evidence That Millennial and Fast-Cycling Soil Carbon Are Equally Sensitive to Warming”. Nature Climate Change, vol. 9, no. 6, 2019, pp. 467-71, https://doi.org/10.1038/s41558-019-0468-y.
  4. Gu, Xueying, et al. “Saturated Nitrous Oxide Emission Rates Occur above the Nitrogen Deposition Level Predicted for the Semi-Arid Grasslands of Inner Mongolia, China”. Geoderma, vol. 341, 2019, pp. 18-25, https://doi.org/10.1016/j.geoderma.2019.01.002.
  5. Muster, Sina, et al. “Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time”. Frontiers in Earth Science, vol. 7, 2019, https://doi.org/10.3389/feart.2019.00005.
  6. Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.
  7. Rogers, Alistair, et al. “Terrestrial Biosphere Models May Overestimate Arctic Carbon Dioxide Assimilation If They Do Not Account for Decreased Quantum Yield and Convexity at Low Temperature”. New Phytologist, vol. 223, no. 223, 2019, pp. 167-79, https://doi.org/10.1111/nph.15750.
  8. Burnett, Angela C., et al. “The ‘one‐point method’ for Estimating Maximum Carboxylation Capacity of Photosynthesis: A Cautionary Tale”. Plant, Cell & Environment, vol. 42, no. 8, 2019, pp. 2472-81, https://doi.org/10.1111/pce.13574.
  9. Thomas, H. J. D., et al. “Traditional Plant Functional Groups Explain Variation in Economic But Not size‐related Traits across the Tundra Biome”. Global Ecology and Biogeography, vol. 28, no. 2, 2019, pp. 78-95, https://doi.org/10.1111/geb.12783.
  10. Reuss-Schmidt, Kassandra, et al. “Understanding Spatial Variability of Methane Fluxes in Arctic Wetlands through Footprint Modelling”. Environmental Research Letters, vol. 14, no. 12, 2019, p. 125010, https://doi.org/10.1088/1748-9326/ab4d32.
  11. Bennett, Katrina E., et al. “Using MODIS Estimates of Fractional Snow Cover Area to Improve Streamflow Forecasts in Interior Alaska”. Hydrology and Earth System Sciences, vol. 23, no. 5, 2019, pp. 2439-5, https://doi.org/10.5194/hess-23-2439-2019.
  12. Pau, George Shu Heng, et al. “A Reduced-Order Modeling Approach to Represent Subgrid-Scale Hydrological Dynamics for Land-Surface Simulations: Application in a Polygonal Tundra Landscape”. Geoscientific Model Development, vol. 7, no. 5, 2014, pp. 2091-05, https://doi.org/10.5194/gmd-7-2091-2014.
  13. Riley, William J., and Chaopeng Shen. “Characterizing Coarse-Resolution Watershed Soil Moisture Heterogeneity Using Fine-Scale Simulations and Reduced-Order Models”. Hydrology and Earth System Sciences, vol. 18, no. 7, 2014, pp. 2463-8, https://doi.org/10.5194/hess-18-2463-2014.
  14. Painter, Scott L., and Satish Karra. “Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils”. Vadose Zone Journal, vol. 13, no. 4, 2014, https://doi.org/10.2136/vzj2013.04.0071.
  15. Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
  16. Dou, Shan, and Jonathan B. Ajo-Franklin. “Full-Wavefield Inversion of Surface Waves for Mapping Embedded Low-Velocity Zones in Permafrost”. GEOPHYSICS, vol. 79, no. 6, 2014, pp. EN107 - EN124, https://doi.org/10.1190/geo2013-0427.1.
  17. Rogers, Alistair, et al. “Improving Representation of Photosynthesis in Earth System Models”. New Phytologist, vol. 204, no. 1, 2014, pp. 12-14, https://doi.org/10.1111/nph.12972.
  18. Moody, Daniela I., et al. “Land Cover Classification in Multispectral Imagery Using Clustering of Sparse Approximations over Learned Feature Dictionaries”. Journal of Applied Remote Sensing, vol. 8, no. 1, 2014, p. 084793, https://doi.org/10.1117/1.JRS.8.084793.
  19. Riley, William J., et al. “Long Residence Times of Rapidly Decomposable Soil Organic Matter: Application of a Multi-Phase, Multi-Component, and Vertically Resolved Model (BAMS1) to Soil Carbon Dynamics”. Geoscientific Model Development, vol. 7, no. 4, 2014, pp. 1335-5, https://doi.org/10.5194/gmd-7-1335-2014.
  20. Bouskill, Nicholas J., et al. “Meta-Analysis of High-Latitude Nitrogen-Addition and Warming Studies Implies Ecological Mechanisms Overlooked by Land Models”. Biogeosciences, vol. 11, no. 23, 2014, pp. 6969-83, https://doi.org/10.5194/bg-11-6969-201410.5194/bg-11-6969-2014-supplement.