Publications by Author

Authors who are active project participants

  • David E. Graham

    2022

    • Zheng, Jianqiu, et al. “Quantifying PH Buffering Capacity in Acidic, Organic-Rich Arctic Soils: Measurable Proxies and Implications for Soil Carbon Degradation”. Geoderma, vol. 424, 2022, p. 116003, https://doi.org/10.1016/j.geoderma.2022.116003.
    • Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.

    2021

    • Roy_Chowdhury, Taniya, et al. “Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon SoilsData_Sheet_1.Docx”. Frontiers in Microbiology, vol. 11, 2021, https://doi.org/10.3389/fmicb.2020.61651810.3389/fmicb.2020.616518.s001.

    2020

    • Philben, Michael J., et al. “Anaerobic Respiration Pathways and Response to Increased Substrate Availability of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, vol. 22, no. 10, 2020, pp. 2070-83, https://doi.org/10.1039/D0EM00124D.
    • Philben, Michael J., et al. “Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 125, no. 7, 2020, https://doi.org/10.1029/2019JG005512.

    2019

    • Zheng, Jianqiu, et al. “Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization”. Biogeosciences, vol. 16, no. 3, 2019, pp. 663-80, https://doi.org/10.5194/bg-16-663-2019.
    • Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.

    2018

    • Jubb, Aaron M., et al. “Characterization of Iron Oxide Nanoparticle Films at the air–water Interface in Arctic Tundra Waters”. Science of The Total Environment, vol. 633, 2018, pp. 1460-8, https://doi.org/10.1016/j.scitotenv.2018.03.332.
    • Zheng, Jianqiu, et al. “Impacts of Temperature and Soil Characteristics on Methane Production and Oxidation in Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1-27, https://doi.org/10.5194/bg-2017-56610.5194/bg-2017-566-supplement10.5194/bg-2017-566-RC110.5194/bg-2017-566-RC210.5194/bg-2017-566-AC110.5194/bg-2017-566-AC2.
    • Chen, Hongmei, et al. “Molecular Insights into Arctic Soil Organic Matter Degradation under Warming”. Environmental Science & Technology, vol. 52, no. 8, 2018, pp. 4555-64, https://doi.org/10.1021/acs.est.7b05469.

    2017

    • Herndon, Elizabeth M., et al. “Influence of Iron Redox Cycling on Organo-Mineral Associations in Arctic Tundra Soil”. Geochimica Et Cosmochimica Acta, vol. 207, 2017, pp. 210-31, https://doi.org/10.1016/j.gca.2017.02.034.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Yang, Ziming, et al. “Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment”. Frontiers in Microbiology, vol. 27, no. 3, 2017, https://doi.org/10.3389/fmicb.2017.01741.

    2016

    • Throckmorton, Heather M., et al. “Active Layer Hydrology in an Arctic Tundra Ecosystem: Quantifying Water Sources and Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016, https://doi.org/10.1002/hyp.10883.
    • Tang, Guoping, et al. “Biogeochemical Model of Carbon Dioxide and Methane Production in Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1-31, https://doi.org/10.5194/bg-2016-20710.5194/bg-2016-207-supplement10.5194/bg-2016-207-RC110.5194/bg-2016-207-RC210.5194/bg-2016-207-RC310.5194/bg-2016-207-AC110.5194/bg-2016-207-AC2.
    • Yang, Ziming, et al. “Effects of Warming on the Degradation and Production of Low-Molecular-Weight Labile Organic Carbon in an Arctic Tundra Soil”. Soil Biology and Biochemistry, vol. 95, 2016, pp. 202-11, https://doi.org/10.1016/j.soilbio.2015.12.022.
    • Schädel, Christina, et al. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils”. Nature Climate Change, vol. 6, no. 10, 2016, pp. 950-3, https://doi.org/10.1038/nclimate3054.
    • Xu, Xiaofeng, et al. “Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems”. Biogeosciences, vol. 13, no. 12, 2016, pp. 3735-5, https://doi.org/10.5194/bg-13-3735-2016.
    • Yang, Ziming, et al. “Warming Increases Methylmercury Production in an Arctic Soil”. Environmental Pollution, vol. 214, 2016, pp. 504-9, https://doi.org/10.1016/j.envpol.2016.04.069.

    2015

    • Xu, Xiaofeng, et al. “A Microbial Functional Group-Based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 7, 2015, pp. 1315-33, https://doi.org/10.1002/2015JG002935.
    • Herndon, Elizabeth M., et al. “Geochemical Drivers of Organic Matter Decomposition in Arctic Tundra Soils”. Biogeochemistry, vol. 126, no. 3, 2015, pp. 397-14, https://doi.org/10.1007/s10533-015-0165-5.
    • Mann, Benjamin F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. PLOS ONE, vol. 10, no. 6, 2015, https://doi.org/10.1371/journal.pone.0130557.
    • Heikoop, Jeffrey Martin, et al. “Isotopic Identification of Soil and Permafrost Nitrate Sources in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 6, 2015, pp. 1000-17, https://doi.org/10.1002/2014JG002883.
    • Newman, Brent D., et al. “Microtopographic and Depth Controls on Active Layer Chemistry in Arctic Polygonal Ground”. Geophysical Research Letters, vol. 42, no. 6, 2015, pp. 1808-17, https://doi.org/10.1002/2014GL062804.
    • Herndon, Elizabeth M., et al. “Pathways of Anaerobic Organic Matter Decomposition in Tundra Soils from Barrow, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 11, 2015, pp. 2345-59, https://doi.org/10.1002/2015JG003147.
    • RoyChowdhury, Taniya, et al. “Stoichiometry and Temperature Sensitivity of Methanogenesis and CO<sub>2< Sub> Production from Saturated Polygonal Tundra in Barrow, Alaska”. Global Change Biology, vol. 21, no. 2, 2015, pp. 722-37, https://doi.org/10.1111/gcb.12762.

    2012

    • Graham, David E., et al. “Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation”. The ISME Journal, vol. 6, no. 4, 2012, pp. 709-12, https://doi.org/10.1038/ismej.2011.163.
  • Verity G. Salmon

    2022

    • McCaully, Rachel E., et al. “High Temporal and Spatial Variability of Nitrate on an Alaskan Hillslope Dominated by Alder Shrubs”. The Cryosphere, 2022, https://doi.org/10.5194/tc-2021-166.

    2021

    • Euskirchen, Eugénie S., et al. “Assessing Dynamic Vegetation Model Parameter Uncertainty across Alaskan Arctic Tundra Plant Communities”. Ecological Applications, 2021, https://doi.org/10.1002/eap.2499.
    • Sulman, Benjamin N., et al. “Integrating Arctic Plant Functional Types in a Land Surface Model Using Above‐ and Belowground Field Observations”. Journal of Advances in Modeling Earth Systems, vol. 13, no. 4, 2021, https://doi.org/10.1029/2020MS002396.
    • Yang, Dedi, et al. “Landscape-Scale Characterization of Arctic Tundra Vegetation Composition, Structure, and Function With a Multi-Sensor Unoccupied Aerial System”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 085005, https://doi.org/10.1088/1748-9326/ac1291.
    • Kropp, Heather, et al. “Shallow Soils Are Warmer under Trees and Tall Shrubs across Arctic and Boreal Ecosystems”. Environmental Research Letters, vol. 16, no. 1, 2021, p. 015001, https://doi.org/10.1088/1748-9326/abc994.
    • Mekonnen, Zelalem A., et al. “Topographical Controls on Hillslope‐Scale Hydrology Drive Shrub Distributions on the Seward Peninsula, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 2, 2021, https://doi.org/10.1029/2020JG005823.

    2020

    • Yang, Dedi, et al. “A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra”. Remote Sensing, vol. 12, no. 16, 2020, p. 2638, https://doi.org/10.3390/rs12162638.

    2019

    • Salmon, Verity G., et al. “Alder Distribution and Expansion across a Tundra Hillslope: Implications for Local N Cycling”. Frontiers in Plant Science, vol. 10, 2019, https://doi.org/10.3389/fpls.2019.01099.

    2017

    • Mauritz, Marguerite, et al. “Nonlinear Carbon Dioxide Flux Response to 7 years of Experimentally Induced Permafrost Thaw”. Global Change Biology, no. 23, 2017, pp. 3646–3666, https://doi.org/10.1111/gcb.13661.
  • Margaret S. Torn

    2021

    • Mekonnen, Zelalem A., et al. “Arctic Tundra Shrubification: A Review of Mechanisms and Impacts on Ecosystem Carbon Balance”. Environmental Research Letters, vol. 16, no. 5, 2021, p. 053001, https://doi.org/10.1088/1748-9326/abf28b.
    • Wainwright, Haruko M., et al. “High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data”. Land, vol. 10, no. 7, 2021, p. 722, https://doi.org/10.3390/land10070722.
    • Dengel, Sigrid, et al. “Influence of Tundra Polygon Type and Climate Variability on Carbon Dioxide and Methane Fluxes Near Utqiagvik, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 12, 2021, https://doi.org/10.1029/2021JG006262.
    • Watts, Jennifer D., et al. “Soil Respiration Strongly Offsets Carbon Uptake in Alaska and Northwest Canada”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 084051, https://doi.org/10.1088/1748-9326/ac1222.
    • Virkkala, Anna-Maria, et al. “Statistical Upscaling of Ecosystem Carbon Dioxide Fluxes across the Terrestrial Tundra and Boreal Domain: Regional Patterns and Uncertainties”. Global Change Biology, vol. 27, no. 17, 2021, pp. 4040-59, https://doi.org/10.1111/gcb.v27.1710.1111/gcb.15659.

    2020

    • Lehmann, Johannes, et al. “Persistence of Soil Organic Carbon Caused by Functional Complexity”. Nature Geoscience, vol. 13, no. 8, 2020, pp. 529-34, https://doi.org/10.1038/s41561-020-0612-3.

    2019

    • Arora, Bhavna, et al. “Evaluating Temporal Controls on Greenhouse Gas (GHG) Fluxes in an Arctic Tundra Environment: An Entropy-Based Approach”. Science of The Total Environment, vol. 649, 2019, pp. 284-99, https://doi.org/10.1016/j.scitotenv.2018.08.251.
    • Wang, Yihui, et al. “Mechanistic Modeling of Microtopographic Impacts on Carbon Dioxide and Methane Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model”. Journal of Advances in Modeling Earth Systems, vol. 11, 2019, p. 17, https://doi.org/10.1029/2019MS001771.
    • Grant, Robert F., et al. “Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 2. Changes in Carbon Dioxide and Methane Exchange Depend on Rates of Permafrost Thaw As Affected by Changes in Vegetation and Drainage”. Journal of GeophysicalResearch: Biogeosciences, vol. 124, no. 5, 2019, pp. 1323-41, https://doi.org/10.1029/2018JG004645.

    2018

    • Taş, Neslihan, et al. “Landscape Topography Structures the Soil Microbiome in Arctic Polygonal Tundra”. Nature Communications, vol. 9, no. 1, 2018, https://doi.org/10.1038/s41467-018-03089-z.

    2017

    • Raz-Yaseef, Naama, et al. “Evapotranspiration across Plant Types and Geomorphological Units in Polygonal Arctic Tundra”. Journal of Hydrology, vol. 553, 2017, pp. 816-25, https://doi.org/10.1016/j.jhydrol.2017.08.036.
    • Raz-Yaseef, Naama, et al. “Large Carbon Dioxide and Methane Emissions from Polygonal Tundra During Spring Thaw in Northern Alaska”. Geophysical Research Letters, vol. 44, no. 1, 2017, pp. 504-13, https://doi.org/10.1002/2016GL071220.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 2. Microtopography Determines How Carbon Dioxide and Methane Exchange Responds to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3174-87, https://doi.org/10.1002/2017JG004037.
    • Dwivedi, Dipankar, et al. “Mineral Properties, Microbes, Transport, and Plant-Input Profiles Control Vertical Distribution and Age of Soil Carbon Stocks”. Soil Biology and Biochemistry, vol. 107, 2017, pp. 244-59, https://doi.org/10.1016/j.soilbio.2016.12.019.

    2016

    • Xu, Xiyan, et al. “A Multi-Scale Comparison of Modeled and Observed Seasonal Methane Emissions in Northern Wetlands”. Biogeosciences, vol. 13, no. 17, 2016, pp. 5043-56, https://doi.org/10.5194/bg-13-5043-201610.5194/bg-13-5043-2016-supplement.
    • Vaughn, Lydia J. S., et al. “Isotopic Insights into Methane Production, Oxidation, and Emissions in Arctic Polygon Tundra”. Global Change Biology, vol. 22, no. 10, 2016, pp. 3487-02, https://doi.org/10.1111/gcb.2016.22.issue-1010.1111/gcb.13281.

    2015

    • Wainwright, Haruko M., et al. “Identifying Multiscale Zonation and Assessing the Relative Importance of Polygon Geomorphology on Carbon Fluxes in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 4, 2015, pp. 788-0, https://doi.org/10.1002/2014JG002799.
    • Throckmorton, Heather M., et al. “Pathways and Transformations of Dissolved Methane and Dissolved Inorganic Carbon in Arctic Tundra Watersheds: Evidence from Analysis of Stable Isotopes”. Global Biogeochemical Cycles, vol. 29, no. 11, 2015, pp. 1893-10, https://doi.org/10.1002/2014GB005044.

    2014

    • Riley, William J., et al. “Long Residence Times of Rapidly Decomposable Soil Organic Matter: Application of a Multi-Phase, Multi-Component, and Vertically Resolved Model (BAMS1) to Soil Carbon Dynamics”. Geoscientific Model Development, vol. 7, no. 4, 2014, pp. 1335-5, https://doi.org/10.5194/gmd-7-1335-2014.