Publications by Author

Authors who are active project participants

  • Baptiste Dafflon

    2022

    • Dafflon, Baptiste, et al. “A Distributed Temperature Profiling System for Vertically and Laterally Dense Acquisition of Soil and Snow Temperature”. The Cryosphere, vol. 16, no. 2, 2022, pp. 719-36, https://doi.org/10.5194/tc-16-719-2022.
    • Arendt, Carli A., et al. “Increased Arctic NO3− Availability As a Hydrogeomorphic Consequence of Permafrost Degradation and Landscape Drying”. Nitrogen, vol. 3, no. 2, 2022, pp. 314-32, https://doi.org/10.3390/nitrogen3020021.
    • Wielandt, Stijn, et al. “Low-Power, Flexible Sensor Arrays With Solderless Board-to-Board Connectors for Monitoring Soil Deformation and Temperature”. Sensors, vol. 22, no. 7, 2022, p. 2814, https://doi.org/10.3390/s22072814.
    • Shirley, Ian A., et al. “Rapidly Changing High-Latitude Seasonality: Implications for the 21st Century Carbon Cycle in Alaska”. Environmental Research Letters, vol. 17, no. 1, 2022, p. 014032, https://doi.org/10.1088/1748-9326/ac4362.
    • Bennett, Katrina E., et al. “Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic”. The Cryosphere, 2022, https://doi.org/https://doi.org/10.5194/tc-2021-341.

    2021

    • Uhlemann, Sebastian, et al. “Geophysical Monitoring Shows That Spatial Heterogeneity in Thermohydrological Dynamics Reshapes a Transitional Permafrost System”. Geophysical Research Letters, vol. 48, no. 6, 2021, https://doi.org/10.1029/2020GL091149.
    • Wainwright, Haruko M., et al. “High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data”. Land, vol. 10, no. 7, 2021, p. 722, https://doi.org/10.3390/land10070722.

    2020

    • Jafarov, Elchin E., et al. “Estimation of Subsurface Porosities and Thermal Conductivities of Polygonal Tundra by Coupled Inversion of Electrical Resistivity, Temperature, and Moisture Content Data”. The Cryosphere, vol. 14, no. 1, 2020, pp. 77-91, https://doi.org/10.5194/tc-14-77-2020.
    • Wales, Nathan A., et al. “Understanding the Relative Importance of Vertical and Horizontal Flow in Ice-Wedge Polygons”. Hydrology and Earth System Sciences, vol. 24, no. 3, 2020, pp. 1109-2, https://doi.org/10.5194/hess-24-1109-2020.

    2019

    • Léger, Emmanuel, et al. “A Distributed Temperature Profiling Method for Assessing Spatial Variability in Ground Temperatures in a Discontinuous Permafrost Region of Alaska”. The Cryosphere, vol. 13, 2019, pp. 2853-67, https://doi.org/10.5194/tc-13-2853-2019.
    • Arora, Bhavna, et al. “Evaluating Temporal Controls on Greenhouse Gas (GHG) Fluxes in an Arctic Tundra Environment: An Entropy-Based Approach”. Science of The Total Environment, vol. 649, 2019, pp. 284-99, https://doi.org/10.1016/j.scitotenv.2018.08.251.

    2018

    • Bisht, Gautam, et al. “Impacts of Microtopographic Snow Redistribution and Lateral Subsurface Processes on Hydrologic and Thermal States in an Arctic Polygonal Ground Ecosystem: A Case Study Using ELM-3D v1.0”. Geoscientific Model Development, vol. 11, no. 1, 2018, pp. 61-76, https://doi.org/https://doi.org/10.5194/gmd-11-61-2018.
    • Tran, Anh Phuong, et al. “Spatial and Temporal Variations of Thaw Layer Thickness and Its Controlling Factors Identified Using Time-Lapse Electrical Resistivity Tomography and Hydro-Thermal Modeling”. Journal of Hydrology, vol. 561, 2018, pp. 751-63, https://doi.org/10.1016/j.jhydrol.2018.04.028.

    2017

    • Dafflon, Baptiste, et al. “Coincident Aboveground and Belowground Autonomous Monitoring to Quantify Covariability in Permafrost, Soil, and Vegetation Properties in Arctic Tundra”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 6, 2017, pp. 1321-42, https://doi.org/10.1002/2016JG003724.
    • Tran, Anh Phuong, et al. “Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Content and Explore Associated Hydrological and Thermal Dynamics in an Arctic Tundra”. The Cryosphere, vol. 11, 2017, pp. 2089-0, https://doi.org/10.5194/tc-11-2089-2017.
    • Wu, Yuxin, et al. “Electrical and Seismic Response of Saline Permafrost Soil During Freeze - Thaw Transition”. Journal of Applied Geophysics, vol. 146, 2017, pp. 16-26, https://doi.org/10.1016/j.jappgeo.2017.08.008.
    • Wainwright, Haruko M., et al. “Mapping Snow Depth Within a Tundra Ecosystem Using Multiscale Observations and Bayesian Methods”. The Cryosphere, vol. 11, no. 2, 2017, pp. 857-75, https://doi.org/10.5194/tc-11-857-2017.
    • Léger, Emmanuel, et al. “Quantification of Arctic Soil and Permafrost Properties Using Ground-Penetrating Radar and Electrical Resistivity Tomography Datasets”. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 10, 2017, pp. 4348-59, https://doi.org/10.1109/JSTARS.2017.2694447.

    2016

    • Dafflon, Baptiste, et al. “Geophysical Estimation of Shallow Permafrost Distribution and Properties in an Ice-Wedge Polygon-Dominated Arctic Tundra Region”. GEOPHYSICS, vol. 81, no. 1, 2016, pp. WA247 - WA263, https://doi.org/10.1190/geo2015-0175.1.
    • Dafflon, Baptiste, et al. “Quantification of Arctic Soil and Permafrost Properties Using Ground Penetrating Radar”. 2016 16th International Conference on Ground Penetrating Radar (GPR) , 2016, https://doi.org/10.1109/ICGPR.2016.7572663.

    2015

    • Wainwright, Haruko M., et al. “Identifying Multiscale Zonation and Assessing the Relative Importance of Polygon Geomorphology on Carbon Fluxes in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 4, 2015, pp. 788-0, https://doi.org/10.1002/2014JG002799.

    2014

    • Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.

    2013

    • Dafflon, Baptiste, et al. “Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data”. Vadose Zone Journal, vol. 12, no. 4, 2013, https://doi.org/10.2136/vzj2012.0161.
    • Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.
  • David E. Graham

    2022

    • Zheng, Jianqiu, et al. “Quantifying PH Buffering Capacity in Acidic, Organic-Rich Arctic Soils: Measurable Proxies and Implications for Soil Carbon Degradation”. Geoderma, vol. 424, 2022, p. 116003, https://doi.org/10.1016/j.geoderma.2022.116003.
    • Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.

    2021

    • Roy_Chowdhury, Taniya, et al. “Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon SoilsData_Sheet_1.Docx”. Frontiers in Microbiology, vol. 11, 2021, https://doi.org/10.3389/fmicb.2020.61651810.3389/fmicb.2020.616518.s001.

    2020

    • Philben, Michael J., et al. “Anaerobic Respiration Pathways and Response to Increased Substrate Availability of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, vol. 22, no. 10, 2020, pp. 2070-83, https://doi.org/10.1039/D0EM00124D.
    • Philben, Michael J., et al. “Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 125, no. 7, 2020, https://doi.org/10.1029/2019JG005512.

    2019

    • Zheng, Jianqiu, et al. “Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization”. Biogeosciences, vol. 16, no. 3, 2019, pp. 663-80, https://doi.org/10.5194/bg-16-663-2019.
    • Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.

    2018

    • Jubb, Aaron M., et al. “Characterization of Iron Oxide Nanoparticle Films at the air–water Interface in Arctic Tundra Waters”. Science of The Total Environment, vol. 633, 2018, pp. 1460-8, https://doi.org/10.1016/j.scitotenv.2018.03.332.
    • Zheng, Jianqiu, et al. “Impacts of Temperature and Soil Characteristics on Methane Production and Oxidation in Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1-27, https://doi.org/10.5194/bg-2017-56610.5194/bg-2017-566-supplement10.5194/bg-2017-566-RC110.5194/bg-2017-566-RC210.5194/bg-2017-566-AC110.5194/bg-2017-566-AC2.
    • Chen, Hongmei, et al. “Molecular Insights into Arctic Soil Organic Matter Degradation under Warming”. Environmental Science & Technology, vol. 52, no. 8, 2018, pp. 4555-64, https://doi.org/10.1021/acs.est.7b05469.

    2017

    • Herndon, Elizabeth M., et al. “Influence of Iron Redox Cycling on Organo-Mineral Associations in Arctic Tundra Soil”. Geochimica Et Cosmochimica Acta, vol. 207, 2017, pp. 210-31, https://doi.org/10.1016/j.gca.2017.02.034.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Yang, Ziming, et al. “Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment”. Frontiers in Microbiology, vol. 27, no. 3, 2017, https://doi.org/10.3389/fmicb.2017.01741.

    2016

    • Throckmorton, Heather M., et al. “Active Layer Hydrology in an Arctic Tundra Ecosystem: Quantifying Water Sources and Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016, https://doi.org/10.1002/hyp.10883.
    • Tang, Guoping, et al. “Biogeochemical Model of Carbon Dioxide and Methane Production in Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1-31, https://doi.org/10.5194/bg-2016-20710.5194/bg-2016-207-supplement10.5194/bg-2016-207-RC110.5194/bg-2016-207-RC210.5194/bg-2016-207-RC310.5194/bg-2016-207-AC110.5194/bg-2016-207-AC2.
    • Yang, Ziming, et al. “Effects of Warming on the Degradation and Production of Low-Molecular-Weight Labile Organic Carbon in an Arctic Tundra Soil”. Soil Biology and Biochemistry, vol. 95, 2016, pp. 202-11, https://doi.org/10.1016/j.soilbio.2015.12.022.
    • Schädel, Christina, et al. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils”. Nature Climate Change, vol. 6, no. 10, 2016, pp. 950-3, https://doi.org/10.1038/nclimate3054.
    • Xu, Xiaofeng, et al. “Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems”. Biogeosciences, vol. 13, no. 12, 2016, pp. 3735-5, https://doi.org/10.5194/bg-13-3735-2016.
    • Yang, Ziming, et al. “Warming Increases Methylmercury Production in an Arctic Soil”. Environmental Pollution, vol. 214, 2016, pp. 504-9, https://doi.org/10.1016/j.envpol.2016.04.069.

    2015

    • Xu, Xiaofeng, et al. “A Microbial Functional Group-Based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 7, 2015, pp. 1315-33, https://doi.org/10.1002/2015JG002935.
    • Herndon, Elizabeth M., et al. “Geochemical Drivers of Organic Matter Decomposition in Arctic Tundra Soils”. Biogeochemistry, vol. 126, no. 3, 2015, pp. 397-14, https://doi.org/10.1007/s10533-015-0165-5.
    • Mann, Benjamin F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. PLOS ONE, vol. 10, no. 6, 2015, https://doi.org/10.1371/journal.pone.0130557.
    • Heikoop, Jeffrey Martin, et al. “Isotopic Identification of Soil and Permafrost Nitrate Sources in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 6, 2015, pp. 1000-17, https://doi.org/10.1002/2014JG002883.
    • Newman, Brent D., et al. “Microtopographic and Depth Controls on Active Layer Chemistry in Arctic Polygonal Ground”. Geophysical Research Letters, vol. 42, no. 6, 2015, pp. 1808-17, https://doi.org/10.1002/2014GL062804.
    • Herndon, Elizabeth M., et al. “Pathways of Anaerobic Organic Matter Decomposition in Tundra Soils from Barrow, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 11, 2015, pp. 2345-59, https://doi.org/10.1002/2015JG003147.
    • RoyChowdhury, Taniya, et al. “Stoichiometry and Temperature Sensitivity of Methanogenesis and CO<sub>2< Sub> Production from Saturated Polygonal Tundra in Barrow, Alaska”. Global Change Biology, vol. 21, no. 2, 2015, pp. 722-37, https://doi.org/10.1111/gcb.12762.

    2012

    • Graham, David E., et al. “Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation”. The ISME Journal, vol. 6, no. 4, 2012, pp. 709-12, https://doi.org/10.1038/ismej.2011.163.
  • Joel C. Rowland

    2021

    • Glade, Rachel C., et al. “Arctic Soil Patterns Analogous to Fluid Instabilities”. Proceedings of the National Academy of Sciences, vol. 118, no. 21, 2021, https://doi.org/10.1073/pnas.2101255118.

    2017

    • Shelef, Eitan, et al. “Large Uncertainty in Permafrost Carbon Stocks Due to Hillslope Soil Deposits”. Geophysical Research Letters, vol. 44, no. 12, 2017, pp. 6134-4, https://doi.org/10.1002/grl.v44.1210.1002/2017GL073823.

    2016

    • Harp, Dylan R., et al. “Effect of Soil Property Uncertainties on Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, vol. 10, no. 1, 2016, pp. 341-58, https://doi.org/10.5194/tc-10-341-201610.5194/tc-10-341-2016-supplement.
    • Rowland, Joel C., and Ethan T. Coon. “From Documentation to Prediction: How Remote Sensing and Mechanistic Modeling Are Raising the Bar for Thermokarst Research”. Hydrogeology Journal, vol. 24, no. 3, 2016, pp. 645-8, https://doi.org/10.1007/s10040-015-1331-5.

    2014

    • Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
    • Moody, Daniela I., et al. “Land Cover Classification in Multispectral Imagery Using Clustering of Sparse Approximations over Learned Feature Dictionaries”. Journal of Applied Remote Sensing, vol. 8, no. 1, 2014, p. 084793, https://doi.org/10.1117/1.JRS.8.084793.

    2013

    • Skurikhin, Alexei N., et al. “Arctic Tundra Ice-Wedge Landscape Characterization by Active Contours Without Edges and Structural Analysis Using High-Resolution Satellite Imagery”. Remote Sensing Letters, vol. 4, no. 11, 2013, pp. 1077-86, https://doi.org/10.1080/2150704X.2013.840404.
    • Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.

    2012

    • Lewis, K. C., et al. “Drainage Subsidence Associated With Arctic Permafrost Degradation”. Journal of Geophysical Research, vol. 117, no. F4, 2012, https://doi.org/10.1029/2011JF002284.

    2011

    • Rowland, Joel C., et al. “The Role of Advective Heat Transport in Talik Development Beneath Lakes and Ponds in Discontinuous Permafrost”. Geophysical Research Letters, vol. 38, no. 17, 2011, https://doi.org/10.1029/2011GL048497.

    2010

    • Rowland, Joel C., et al. “Arctic Landscapes in Transition: Responses to Thawing Permafrost”. Eos, Transactions, American Geophysical Union, vol. 91, no. 26, 2010, p. 229, https://doi.org/10.1029/2010EO260001.
  • Margaret S. Torn

    2021

    • Mekonnen, Zelalem A., et al. “Arctic Tundra Shrubification: A Review of Mechanisms and Impacts on Ecosystem Carbon Balance”. Environmental Research Letters, vol. 16, no. 5, 2021, p. 053001, https://doi.org/10.1088/1748-9326/abf28b.
    • Wainwright, Haruko M., et al. “High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data”. Land, vol. 10, no. 7, 2021, p. 722, https://doi.org/10.3390/land10070722.
    • Dengel, Sigrid, et al. “Influence of Tundra Polygon Type and Climate Variability on Carbon Dioxide and Methane Fluxes Near Utqiagvik, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 12, 2021, https://doi.org/10.1029/2021JG006262.
    • Watts, Jennifer D., et al. “Soil Respiration Strongly Offsets Carbon Uptake in Alaska and Northwest Canada”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 084051, https://doi.org/10.1088/1748-9326/ac1222.
    • Virkkala, Anna-Maria, et al. “Statistical Upscaling of Ecosystem Carbon Dioxide Fluxes across the Terrestrial Tundra and Boreal Domain: Regional Patterns and Uncertainties”. Global Change Biology, vol. 27, no. 17, 2021, pp. 4040-59, https://doi.org/10.1111/gcb.v27.1710.1111/gcb.15659.

    2020

    • Lehmann, Johannes, et al. “Persistence of Soil Organic Carbon Caused by Functional Complexity”. Nature Geoscience, vol. 13, no. 8, 2020, pp. 529-34, https://doi.org/10.1038/s41561-020-0612-3.

    2019

    • Arora, Bhavna, et al. “Evaluating Temporal Controls on Greenhouse Gas (GHG) Fluxes in an Arctic Tundra Environment: An Entropy-Based Approach”. Science of The Total Environment, vol. 649, 2019, pp. 284-99, https://doi.org/10.1016/j.scitotenv.2018.08.251.
    • Wang, Yihui, et al. “Mechanistic Modeling of Microtopographic Impacts on Carbon Dioxide and Methane Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model”. Journal of Advances in Modeling Earth Systems, vol. 11, 2019, p. 17, https://doi.org/10.1029/2019MS001771.
    • Grant, Robert F., et al. “Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 2. Changes in Carbon Dioxide and Methane Exchange Depend on Rates of Permafrost Thaw As Affected by Changes in Vegetation and Drainage”. Journal of GeophysicalResearch: Biogeosciences, vol. 124, no. 5, 2019, pp. 1323-41, https://doi.org/10.1029/2018JG004645.

    2018

    • Taş, Neslihan, et al. “Landscape Topography Structures the Soil Microbiome in Arctic Polygonal Tundra”. Nature Communications, vol. 9, no. 1, 2018, https://doi.org/10.1038/s41467-018-03089-z.

    2017

    • Raz-Yaseef, Naama, et al. “Evapotranspiration across Plant Types and Geomorphological Units in Polygonal Arctic Tundra”. Journal of Hydrology, vol. 553, 2017, pp. 816-25, https://doi.org/10.1016/j.jhydrol.2017.08.036.
    • Raz-Yaseef, Naama, et al. “Large Carbon Dioxide and Methane Emissions from Polygonal Tundra During Spring Thaw in Northern Alaska”. Geophysical Research Letters, vol. 44, no. 1, 2017, pp. 504-13, https://doi.org/10.1002/2016GL071220.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 2. Microtopography Determines How Carbon Dioxide and Methane Exchange Responds to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3174-87, https://doi.org/10.1002/2017JG004037.
    • Dwivedi, Dipankar, et al. “Mineral Properties, Microbes, Transport, and Plant-Input Profiles Control Vertical Distribution and Age of Soil Carbon Stocks”. Soil Biology and Biochemistry, vol. 107, 2017, pp. 244-59, https://doi.org/10.1016/j.soilbio.2016.12.019.

    2016

    • Xu, Xiyan, et al. “A Multi-Scale Comparison of Modeled and Observed Seasonal Methane Emissions in Northern Wetlands”. Biogeosciences, vol. 13, no. 17, 2016, pp. 5043-56, https://doi.org/10.5194/bg-13-5043-201610.5194/bg-13-5043-2016-supplement.
    • Vaughn, Lydia J. S., et al. “Isotopic Insights into Methane Production, Oxidation, and Emissions in Arctic Polygon Tundra”. Global Change Biology, vol. 22, no. 10, 2016, pp. 3487-02, https://doi.org/10.1111/gcb.2016.22.issue-1010.1111/gcb.13281.

    2015

    • Wainwright, Haruko M., et al. “Identifying Multiscale Zonation and Assessing the Relative Importance of Polygon Geomorphology on Carbon Fluxes in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 4, 2015, pp. 788-0, https://doi.org/10.1002/2014JG002799.
    • Throckmorton, Heather M., et al. “Pathways and Transformations of Dissolved Methane and Dissolved Inorganic Carbon in Arctic Tundra Watersheds: Evidence from Analysis of Stable Isotopes”. Global Biogeochemical Cycles, vol. 29, no. 11, 2015, pp. 1893-10, https://doi.org/10.1002/2014GB005044.

    2014

    • Riley, William J., et al. “Long Residence Times of Rapidly Decomposable Soil Organic Matter: Application of a Multi-Phase, Multi-Component, and Vertically Resolved Model (BAMS1) to Soil Carbon Dynamics”. Geoscientific Model Development, vol. 7, no. 4, 2014, pp. 1335-5, https://doi.org/10.5194/gmd-7-1335-2014.