Publications by Author

Authors who are active project participants

  • Katrina E. Bennett

    2022

    • Bennett, Katrina E., et al. “Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic”. The Cryosphere, 2022, https://doi.org/https://doi.org/10.5194/tc-2021-341.

    2021

    • Harp, Dylan R., et al. “New Insights into the Drainage of Inundated Ice-Wedge Polygons Using Fundamental Hydrologic Principles”. The Cryosphere, vol. 15, no. 8, 2021, pp. 4005-29, https://doi.org/10.5194/tc-15-4005-2021.

    2019

    • Bennett, Katrina E., et al. “Using MODIS Estimates of Fractional Snow Cover Area to Improve Streamflow Forecasts in Interior Alaska”. Hydrology and Earth System Sciences, vol. 23, no. 5, 2019, pp. 2439-5, https://doi.org/10.5194/hess-23-2439-2019.
  • Philip Marsh

    2010

    • Rowland, Joel C., et al. “Arctic Landscapes in Transition: Responses to Thawing Permafrost”. Eos, Transactions, American Geophysical Union, vol. 91, no. 26, 2010, p. 229, https://doi.org/10.1029/2010EO260001.
  • Joel C. Rowland

    2021

    • Glade, Rachel C., et al. “Arctic Soil Patterns Analogous to Fluid Instabilities”. Proceedings of the National Academy of Sciences, vol. 118, no. 21, 2021, https://doi.org/10.1073/pnas.2101255118.

    2017

    • Shelef, Eitan, et al. “Large Uncertainty in Permafrost Carbon Stocks Due to Hillslope Soil Deposits”. Geophysical Research Letters, vol. 44, no. 12, 2017, pp. 6134-4, https://doi.org/10.1002/grl.v44.1210.1002/2017GL073823.

    2016

    • Harp, Dylan R., et al. “Effect of Soil Property Uncertainties on Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, vol. 10, no. 1, 2016, pp. 341-58, https://doi.org/10.5194/tc-10-341-201610.5194/tc-10-341-2016-supplement.
    • Rowland, Joel C., and Ethan T. Coon. “From Documentation to Prediction: How Remote Sensing and Mechanistic Modeling Are Raising the Bar for Thermokarst Research”. Hydrogeology Journal, vol. 24, no. 3, 2016, pp. 645-8, https://doi.org/10.1007/s10040-015-1331-5.

    2014

    • Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
    • Moody, Daniela I., et al. “Land Cover Classification in Multispectral Imagery Using Clustering of Sparse Approximations over Learned Feature Dictionaries”. Journal of Applied Remote Sensing, vol. 8, no. 1, 2014, p. 084793, https://doi.org/10.1117/1.JRS.8.084793.

    2013

    • Skurikhin, Alexei N., et al. “Arctic Tundra Ice-Wedge Landscape Characterization by Active Contours Without Edges and Structural Analysis Using High-Resolution Satellite Imagery”. Remote Sensing Letters, vol. 4, no. 11, 2013, pp. 1077-86, https://doi.org/10.1080/2150704X.2013.840404.
    • Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.

    2012

    • Lewis, K. C., et al. “Drainage Subsidence Associated With Arctic Permafrost Degradation”. Journal of Geophysical Research, vol. 117, no. F4, 2012, https://doi.org/10.1029/2011JF002284.

    2011

    • Rowland, Joel C., et al. “The Role of Advective Heat Transport in Talik Development Beneath Lakes and Ponds in Discontinuous Permafrost”. Geophysical Research Letters, vol. 38, no. 17, 2011, https://doi.org/10.1029/2011GL048497.

    2010

    • Rowland, Joel C., et al. “Arctic Landscapes in Transition: Responses to Thawing Permafrost”. Eos, Transactions, American Geophysical Union, vol. 91, no. 26, 2010, p. 229, https://doi.org/10.1029/2010EO260001.
  • Margaret S. Torn

    2021

    • Mekonnen, Zelalem A., et al. “Arctic Tundra Shrubification: A Review of Mechanisms and Impacts on Ecosystem Carbon Balance”. Environmental Research Letters, vol. 16, no. 5, 2021, p. 053001, https://doi.org/10.1088/1748-9326/abf28b.
    • Wainwright, Haruko M., et al. “High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data”. Land, vol. 10, no. 7, 2021, p. 722, https://doi.org/10.3390/land10070722.
    • Dengel, Sigrid, et al. “Influence of Tundra Polygon Type and Climate Variability on Carbon Dioxide and Methane Fluxes Near Utqiagvik, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 12, 2021, https://doi.org/10.1029/2021JG006262.
    • Watts, Jennifer D., et al. “Soil Respiration Strongly Offsets Carbon Uptake in Alaska and Northwest Canada”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 084051, https://doi.org/10.1088/1748-9326/ac1222.
    • Virkkala, Anna-Maria, et al. “Statistical Upscaling of Ecosystem Carbon Dioxide Fluxes across the Terrestrial Tundra and Boreal Domain: Regional Patterns and Uncertainties”. Global Change Biology, vol. 27, no. 17, 2021, pp. 4040-59, https://doi.org/10.1111/gcb.v27.1710.1111/gcb.15659.

    2020

    • Lehmann, Johannes, et al. “Persistence of Soil Organic Carbon Caused by Functional Complexity”. Nature Geoscience, vol. 13, no. 8, 2020, pp. 529-34, https://doi.org/10.1038/s41561-020-0612-3.

    2019

    • Arora, Bhavna, et al. “Evaluating Temporal Controls on Greenhouse Gas (GHG) Fluxes in an Arctic Tundra Environment: An Entropy-Based Approach”. Science of The Total Environment, vol. 649, 2019, pp. 284-99, https://doi.org/10.1016/j.scitotenv.2018.08.251.
    • Wang, Yihui, et al. “Mechanistic Modeling of Microtopographic Impacts on Carbon Dioxide and Methane Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model”. Journal of Advances in Modeling Earth Systems, vol. 11, 2019, p. 17, https://doi.org/10.1029/2019MS001771.
    • Grant, Robert F., et al. “Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 2. Changes in Carbon Dioxide and Methane Exchange Depend on Rates of Permafrost Thaw As Affected by Changes in Vegetation and Drainage”. Journal of GeophysicalResearch: Biogeosciences, vol. 124, no. 5, 2019, pp. 1323-41, https://doi.org/10.1029/2018JG004645.

    2018

    • Taş, Neslihan, et al. “Landscape Topography Structures the Soil Microbiome in Arctic Polygonal Tundra”. Nature Communications, vol. 9, no. 1, 2018, https://doi.org/10.1038/s41467-018-03089-z.

    2017

    • Raz-Yaseef, Naama, et al. “Evapotranspiration across Plant Types and Geomorphological Units in Polygonal Arctic Tundra”. Journal of Hydrology, vol. 553, 2017, pp. 816-25, https://doi.org/10.1016/j.jhydrol.2017.08.036.
    • Raz-Yaseef, Naama, et al. “Large Carbon Dioxide and Methane Emissions from Polygonal Tundra During Spring Thaw in Northern Alaska”. Geophysical Research Letters, vol. 44, no. 1, 2017, pp. 504-13, https://doi.org/10.1002/2016GL071220.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 2. Microtopography Determines How Carbon Dioxide and Methane Exchange Responds to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3174-87, https://doi.org/10.1002/2017JG004037.
    • Dwivedi, Dipankar, et al. “Mineral Properties, Microbes, Transport, and Plant-Input Profiles Control Vertical Distribution and Age of Soil Carbon Stocks”. Soil Biology and Biochemistry, vol. 107, 2017, pp. 244-59, https://doi.org/10.1016/j.soilbio.2016.12.019.

    2016

    • Xu, Xiyan, et al. “A Multi-Scale Comparison of Modeled and Observed Seasonal Methane Emissions in Northern Wetlands”. Biogeosciences, vol. 13, no. 17, 2016, pp. 5043-56, https://doi.org/10.5194/bg-13-5043-201610.5194/bg-13-5043-2016-supplement.
    • Vaughn, Lydia J. S., et al. “Isotopic Insights into Methane Production, Oxidation, and Emissions in Arctic Polygon Tundra”. Global Change Biology, vol. 22, no. 10, 2016, pp. 3487-02, https://doi.org/10.1111/gcb.2016.22.issue-1010.1111/gcb.13281.

    2015

    • Wainwright, Haruko M., et al. “Identifying Multiscale Zonation and Assessing the Relative Importance of Polygon Geomorphology on Carbon Fluxes in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 4, 2015, pp. 788-0, https://doi.org/10.1002/2014JG002799.
    • Throckmorton, Heather M., et al. “Pathways and Transformations of Dissolved Methane and Dissolved Inorganic Carbon in Arctic Tundra Watersheds: Evidence from Analysis of Stable Isotopes”. Global Biogeochemical Cycles, vol. 29, no. 11, 2015, pp. 1893-10, https://doi.org/10.1002/2014GB005044.

    2014

    • Riley, William J., et al. “Long Residence Times of Rapidly Decomposable Soil Organic Matter: Application of a Multi-Phase, Multi-Component, and Vertically Resolved Model (BAMS1) to Soil Carbon Dynamics”. Geoscientific Model Development, vol. 7, no. 4, 2014, pp. 1335-5, https://doi.org/10.5194/gmd-7-1335-2014.