Briones, Valeria, et al. “A Model Parameter Sensitivity Approach to Understand Soil Thermal and Hydrological Linkages and Their Influence on Ecosystem Carbon Dynamics”. Environmental Research Letters , vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad50ed .
Publications
Displaying 1 - 20 of 44
By year of publication, then alphabetical by title
- Wilcox, Evan J., et al. “Bridging Gaps in Permafrost-Shrub Understanding”. PLOS Climate, vol. 3, 2024, https://doi.org/10.1371/journal.pclm.0000360.
- Eklof, Joel, et al. “Canopy Cover and Microtopography Control Precipitation-Enhanced Thaw of Ecosystem-Protected Permafrost”. Environmental Research Letters , vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad31d7.
- Tao, Jing, et al. “Evaluating the Impact of Peat Soils and Snow Schemes on Simulated Active Layer Thickness at Pan-Arctic Permafrost Sites”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad38ce.
- Li, Y, et al. “Genomic Insights into Redox-Driven Microbial Processes for Carbon Decomposition in Thawing Arctic Soils and Permafrost”. MSphere, vol. 9, 2024, https://doi.org/10.1128/msphere.00259-24.
- Del Vecchio, Joanmarie, et al. “Hillslope-Channel Transitions and the Role of Water Tracks in a Changing Permafrost Landscape”. Journal of Geophysical Research – Earth Surface, vol. 128, 2024, https://doi.org/10.1029/2023JF007156.
- Huang, Xiang, et al. “How Does Humidity Data Impact the Land Surface Modeling of Hydrothermal Regimes at a Permafrost Site in Utqiaġvik, Alaska?”. Science of The Total Environment, vol. 912, 2024, https://doi.org/10.1016/j.scitotenv.2023.168697.
- Fiolleau, Sylvain, et al. “Insights on Seasonal Solifluction Processes in Warm Permafrost Arctic Landscape Using a Dense Monitoring Approach across Adjacent Hillslopes”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad28dc.
- Huo, X, et al. “Integrating State Data Assimilation and Innovative Model Parameterization Reduces Simulated Carbon Uptake in the Arctic and Boreal Region”. Journal of Geophysical Research: Biogeosciences , vol. 129, 2024, https://doi.org/10.1029/2024JG008004 .
- Liu, Yanlan, et al. “Large Divergence of Projected High Latitude Vegetation Composition and Productivity Due To Functional Trait Uncertainty”. Earth’s Future , vol. 12, 2024, https://doi.org/10.1029/2024EF004563.
- Wang, Chen, et al. “Local-Scale Heterogeneity of Soil Thermal Dynamics and Controlling Factors in a Discontinuous Permafrost Region”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad27bb .
- Crumley, Ryan, et al. “Snow Distribution Patterns Revisited: A Physics-Based and Machine Learning Hybrid Approach to Snow Distribution Mapping in the Sub-Arctic”. Water Resources Research, vol. 60, 2024, https://doi.org/10.1029/2023WR036180.
- Berner, Logan T. “The Arctic Plant Aboveground Biomass Synthesis Dataset”. Scientific Data, vol. 11, 2024, https://doi.org/10.1038/s41597-024-03139-w.
- Renner, Caleb, et al. “The Next-Generation Ecosystem Experiment Arctic Rainfall Simulator: A Tool to Understand the Effects of Changing Rainfall Patterns in the Arctic”. Hydrology Research, vol. 55, 2024, https://doi.org/10.2166/nh.2023.146.
- Abolt, Charles J., et al. “Topography Controls Variability in Circumpolar Permafrost Thaw Pond Expansion”. Journal of Geophysical Research: Earth Surface , vol. 129, 2024, https://doi.org/10.1029/2024JF007675.
- Overeem, Irina, et al. “A Modeling Toolbox for Permafrost Landscapes”. Eos, Transactions, American Geophysical Union, vol. 99, 2018, https://doi.org/10.1029/2018EO105155.
- Jan, Ahmad, et al. “A Subgrid Approach for Modeling Microtopography Effects on Overland Flow”. Water Resources Research, vol. 54, no. 9, 2018, pp. 6153-67, https://doi.org/10.1029/2017WR021898.
- Wang, Kang, et al. “A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions for Alaska, USA”. Earth System Science Data, vol. 10, no. 4, 2018, pp. 2311-28, https://doi.org/10.5194/essd-10-2311-2018.
- Mekonnen, Zelalem A., et al. “Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra”. Journal of Geophysical Research: Biogeosciences, vol. 123, no. 5, 2018, pp. 1683-01, https://doi.org/10.1029/2017JG004319.
- Jan, Ahmad, et al. “An Intermediate-Scale Model for Thermal Hydrology in Low-Relief Permafrost-Affected Landscapes”. Computational Geosciences, 2018, https://doi.org/10.1007/s10596-017-9679-3.