Snow distribution patterns revisited: A physics-based and machine learning hybrid approach to snow distribution mapping in the sub-Arctic
Abstract |
Snowpack distribution in Arctic and alpine landscapes often occurs in repeating, year-to-year patterns due to local topographic, weather, and vegetation characteristics. Previous studies have suggested that with years of observational data, these snow distribution patterns can be statistically integrated into a snow process modeling workflow. Recent advances in snow hydrology and machine learning (ML) have increased our ability to predict snowpack distribution using in-situ observations, remote sensing data sets, and simple landscape characteristics that can be easily obtained for most environments. Here, we propose a hybrid approach to couple a ML snow distribution pattern (MLSDP) map with a physics-based, snow process model. We trained a random forest ML algorithm on tens of thousands of snow survey observations from a subarctic study area on the Seward Peninsula, Alaska, collected during peak snow water equivalent (SWE). We validated hybrid model outputs using in-situ snow depth and SWE observations, as well as a light detection and ranging data set and a distributed temperature profiling sensor data set. When the hybrid results were compared with the physics-based method, the hybrid method more accurately depicted the spatial patterns of the snowpack, areas of drifting snow, and years when no in-situ observations were used in the random forest ML training data set. The hybrid method also showed improvements in root mean squared error at 61% of locations where time-series estimations of snow depth were observed. These results can be applied to any physics-based model to improve the snow distribution patterning to reflect observed conditions in high latitude and high elevation cold region environments. |
Journal Article
|
|
Year of Publication |
2024
|
Author | |
Journal |
Water Resources Research
|
Volume |
60
|
DOI |
10.1029/2023WR036180
|
Start Page |
e2023WR036180
|
URL |
https://doi.org/10.1029/2023WR036180
|
Download citation |