- Home
- Field Locations
- NGEE Arctic Teller Site, Mile Marker 27, Alaska
NGEE Arctic Teller Site, Mile Marker 27, Alaska
Teller, AK 99778
United States
Content
Science Highlights
Publications
2025
- Wang, Chen, et al. “Advancing the Understanding of Snow Accumulation, Melting, and Associated Thermal Insulation Using Spatially Dense Snow Depth and Temperature Time Series”. Geophysical Research Letters, vol. 52, 2025, https://doi.org/10.1029/2024GL114189.
- Bachand, Claire, et al. “Brief Communication: Monitoring Snow Depth Using Small, Cheap, and Easy-to-Deploy snow–ground Interface Temperature Sensors”. The Cryosphere, vol. 19, no. 19, 2025, https://doi.org/10.5194/tc-19-393-2025.
- Shirley, Ian A, et al. “Disentangling the Impacts of Microtopography and Shrub Distribution on Snow Depth in a Subarctic Watershed: Toward a Predictive Understanding of Snow Spatial Variability”. Journal of Geophysical Research: Biogeosciences , vol. 130, 2025, https://doi.org/10.1029/2024JG008604.
- Lathrop, Emma, et al. “Shrubs Strongly Influence Snow Properties in Two Subarctic Watersheds”. Permafrost and Periglacial Processes, 2025, https://doi.org/10.1002/ppp.2263.
2024
- Fiolleau, Sylvain, et al. “Insights on Seasonal Solifluction Processes in Warm Permafrost Arctic Landscape Using a Dense Monitoring Approach across Adjacent Hillslopes”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad28dc.
- Wang, Chen, et al. “Local-Scale Heterogeneity of Soil Thermal Dynamics and Controlling Factors in a Discontinuous Permafrost Region”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad27bb .
- Crumley, Ryan, et al. “Snow Distribution Patterns Revisited: A Physics-Based and Machine Learning Hybrid Approach to Snow Distribution Mapping in the Sub-Arctic”. Water Resources Research, vol. 60, 2024, https://doi.org/10.1029/2023WR036180.
2023
- Conroy, Nathan A., et al. “Environmental Controls on Observed Spatial Variability of Soil Pore Water Geochemistry in Small Headwater Catchments Underlain With Permafrost”. The Cryosphere, vol. 17, no. 17, 2023, https://doi.org/ttps://doi.org/10.5194/tc-17-3987-2023.
- Uhlemann, Sebastian, et al. “Estimating Permafrost Distribution Using Co-Located Temperature and Electrical Resistivity Measurements”. Geophysical Research Letters, vol. 50, 2023, https://doi.org/10.1029/2023GL103987.
- Thaler, Evan A., et al. “High-Resolution Maps of Near-Surface Permafrost for Three Watersheds on the Seward Peninsula, Alaska Derived From Machine Learning”. Earth and Space Science, vol. 10, 2023, https://doi.org/10.1029/2023EA003015.
- Zhang, Lijie, et al. “Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms”. Environmental Science and Technology, vol. 57, no. 14, 2023, pp. 5655-6, https://doi.org/10.1021/acs.est.2c09457.
- Yang, Dedi, et al. “PiCAM: A Raspberry Pi-Based Open-Source, Low-Power Camera System for Monitoring Plant Phenology in Arctic Environments”. Methods in Ecology and Evolution, vol. 14, 2023, https://doi.org/10.1111/2041-210X.14231.
2022
- Shirley, Ian A., et al. “Near‐Surface Hydrology and Soil Properties Drive Heterogeneity in Permafrost Distribution, Vegetation Dynamics, and Carbon Cycling in a Sub‐Arctic Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 127, no. 9, 2022, https://doi.org/10.1029/2022jg006864.
- Brunetti, Carlotta, et al. “Probabilistic Estimation of Depth-Resolved Profiles of Soil Thermal Diffusivity from Temperature Time Series”. Earth Surface Dynamics, vol. 10, no. 4, 2022, pp. 687-04, https://doi.org/10.5194/esurf-10-687-2022.