Yang, Dedi, et al. “ Fine-Scale Landscape Characteristics, Vegetation Composition, and Snowmelt Timing Control Phenological Heterogeneity across Low-Arctic Tundra Landscapes in Western Alaska”. Environmental Research Ecology, vol. 3, 2025, https://doi.org/10.1088/2752-664X/ad9eb8.
Publications
Displaying 1 - 20 of 43
By year of publication, then alphabetical by title
- Bachand, Claire, et al. “Brief Communication: Monitoring Snow Depth Using Small, Cheap, and Easy-to-Deploy snow–ground Interface Temperature Sensors”. The Cryosphere, vol. 19, no. 19, 2025, https://doi.org/10.5194/tc-19-393-2025.
- Kim, Kwansoo, et al. “Determination of Ground Subsidence Around Snow Fences in the Arctic Region”. Lithosphere, vol. 2025, 2025, https://doi.org/10.2113/2025/lithosphere_2024_215.
- Berns-Herrboldt, Erin C., et al. “Dynamic Soil Columns Simulate Arctic Redox Biogeochemistry and Carbon Release During Changes in Water Saturation”. Scientific Reports, vol. 15, 2025, https://doi.org/10.1038/s41598-024-83556-4.
- Torn, Margaret S., et al. “Large Emissions of CO2 and CH4 Due to Active-Layer Warming in Arctic Tundra”. Nature Communications, vol. 16, 2025, https://doi.org/10.1038/s41467-024-54990-9.
- Hantson, Wouter, et al. “Scaling Arctic Landscape and Permafrost Features Improves Active Layer Depth Modeling”. Environmental Research Ecology, vol. 4 , 2025, https://doi.org/10.1088/2752-664X/ad9f6c.
- Lathrop, Emma, et al. “Shrubs Strongly Influence Snow Properties in Two Subarctic Watersheds”. Permafrost and Periglacial Processes, 2025, https://doi.org/10.1002/ppp.2263.
- Freitas, Nancy L., et al. “Substantial and Overlooked Greenhouse Gas Emissions from Deep Arctic Lake Sediment”. Nature Geoscience, vol. 18, 2025, https://doi.org/10.1038/s41561-024-01614-y.
- Overeem, Irina, et al. “A Modeling Toolbox for Permafrost Landscapes”. Eos, Transactions, American Geophysical Union, vol. 99, 2018, https://doi.org/10.1029/2018EO105155.
- Jan, Ahmad, et al. “A Subgrid Approach for Modeling Microtopography Effects on Overland Flow”. Water Resources Research, vol. 54, no. 9, 2018, pp. 6153-67, https://doi.org/10.1029/2017WR021898.
- Wang, Kang, et al. “A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions for Alaska, USA”. Earth System Science Data, vol. 10, no. 4, 2018, pp. 2311-28, https://doi.org/10.5194/essd-10-2311-2018.
- Mekonnen, Zelalem A., et al. “Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra”. Journal of Geophysical Research: Biogeosciences, vol. 123, no. 5, 2018, pp. 1683-01, https://doi.org/10.1029/2017JG004319.
- Jan, Ahmad, et al. “An Intermediate-Scale Model for Thermal Hydrology in Low-Relief Permafrost-Affected Landscapes”. Computational Geosciences, 2018, https://doi.org/10.1007/s10596-017-9679-3.
- Jubb, Aaron M., et al. “Characterization of Iron Oxide Nanoparticle Films at the air–water Interface in Arctic Tundra Waters”. Science of The Total Environment, vol. 633, 2018, pp. 1460-8, https://doi.org/10.1016/j.scitotenv.2018.03.332.
- McGuire, David, et al. “Dependence of the Evolution of Carbon Dynamics in the Northern Permafrost Region on the Trajectory of Climate Change”. Proceedings of the National Academy of Sciences, vol. 115, no. 15, 2018, pp. 3882-7, https://doi.org/10.1073/pnas.1719903115.
- Wu, Yuxin, et al. “Depth-Resolved Physicochemical Characteristics of Active Layer and Permafrost Soils in an Arctic Polygonal Tundra Region”. Journal of Geophysical Research: Biogeosciences, vol. 123, no. 4, 2018, pp. 1366-8, https://doi.org/10.1002/2018JG004413.
- Parazoo, Nicholas C., et al. “Detecting the Permafrost Carbon Feedback: Talik Formation and Increased Cold-Seasonrespiration As Precursors to Sink-to-Source Transitions”. The Cryosphere Discussions, 2018, pp. 1-44, https://doi.org/10.5194/tc-2017-18910.5194/tc-2017-189-RC110.5194/tc-2017-189-RC210.5194/tc-2017-189-AC110.5194/tc-2017-189-AC2.
- Müller, Oliver, et al. “Disentangling the Complexity of Permafrost Soil by Using High Resolution Profiling of Microbial Community Composition, Key Functions and Respiration Rates”. Environmental Microbiology, vol. 20, no. 12, 2018, https://doi.org/10.1111/1462-2920.14348.
- Young-Robertson, Jessica M., et al. “Evaporation Dominates Evapotranspiration on Alaska’s Arctic Coastal Plain”. Arctic, Antarctic, and Alpine Research, vol. 50, no. 1, 2018, p. e1435931, https://doi.org/10.1080/15230430.2018.1435931.
- Grenier, Christophe, et al. “Groundwater Flow and Heat Transport for Systems Undergoing Freeze-Thaw: Intercomparison of Numerical Simulators for 2D Test Cases”. Advances in Water Resources, vol. 114, 2018, pp. 196-18, https://doi.org/10.1016/j.advwatres.2018.02.001.