Publications

Displaying 21 - 40 of 43
By year of publication, then alphabetical by title
  1. Schore, Aiden I. G., et al. “Nitrogen Fixing Shrubs Advance the Pace of Tall-Shrub Expansion in Low-Arctic Tundra”. Communications Earth & Environment, vol. 4, 2023, https://doi.org/https://doi.org/10.1038/s43247-023-01098-5.
  2. Chang, Kuang‐Yu, et al. “Observational Constraints Reduce Model Spread But Not Uncertainty in Global Wetland Methane Emission Estimates”. Global Change Biology, vol. 29, no. 15, 2023, pp. 4298-12, https://doi.org/10.1111/gcb.16755.
  3. Del Vecchio, Joanmarie, et al. “Patterns and Rates of Soil Movement and Shallow Failures across Several Small Watersheds on the Seward Peninsula, Alaska”. Earth Surface Dynamics, vol. 11, no. 2, 2023, pp. 227-45, https://doi.org/10.5194/esurf-11-227-2023.
  4. Yang, Dedi, et al. “PiCAM: A Raspberry Pi-Based Open-Source, Low-Power Camera System for Monitoring Plant Phenology in Arctic Environments”. Methods in Ecology and Evolution, vol. 14, 2023, https://doi.org/10.1111/2041-210X.14231.
  5. Mevenkamp, Hannah, et al. “Reducing Uncertainty of High-Latitude Ecosystem Models through Identification of Key Parameters”. Environmental Research Letters, vol. 18, 2023, https://doi.org/10.1088/1748-9326/ace637.
  6. Tang, Jinyun, and William J. Riley. “Revising the Dynamic Energy Budget Theory With a New Reserve Mobilization Rule and Three Example Applications to Bacterial Growth”. Soil Biology and Biochemistry, vol. 178, 2023, p. 108954, https://doi.org/10.1016/j.soilbio.2023.108954.
  7. Wielandt, Stijn, et al. “TDD LoRa and Delta Encoding in Low-Power Networks of Environmental Sensor Arrays for Temperature and Deformation Monitoring”. Journal of Signal Processing Systems, 2023, https://doi.org/10.1007/s11265-023-01834-2.
  8. Santos, Fernanda, et al. “The Eco-Evolutionary Role of Fire in Shaping Terrestrial Ecosystems”. Functional Ecology, vol. 37, no. 8, 2023, https://doi.org/https://doi.org/10.1111/1365-2435.14387.
  9. Pau, George Shu Heng, et al. “A Reduced-Order Modeling Approach to Represent Subgrid-Scale Hydrological Dynamics for Land-Surface Simulations: Application in a Polygonal Tundra Landscape”. Geoscientific Model Development, vol. 7, no. 5, 2014, pp. 2091-05, https://doi.org/10.5194/gmd-7-2091-2014.
  10. Riley, William J., and Chaopeng Shen. “Characterizing Coarse-Resolution Watershed Soil Moisture Heterogeneity Using Fine-Scale Simulations and Reduced-Order Models”. Hydrology and Earth System Sciences, vol. 18, no. 7, 2014, pp. 2463-8, https://doi.org/10.5194/hess-18-2463-2014.
  11. Painter, Scott L., and Satish Karra. “Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils”. Vadose Zone Journal, vol. 13, no. 4, 2014, https://doi.org/10.2136/vzj2013.04.0071.
  12. Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
  13. Dou, Shan, and Jonathan B. Ajo-Franklin. “Full-Wavefield Inversion of Surface Waves for Mapping Embedded Low-Velocity Zones in Permafrost”. GEOPHYSICS, vol. 79, no. 6, 2014, pp. EN107 - EN124, https://doi.org/10.1190/geo2013-0427.1.
  14. Rogers, Alistair, et al. “Improving Representation of Photosynthesis in Earth System Models”. New Phytologist, vol. 204, no. 1, 2014, pp. 12-14, https://doi.org/10.1111/nph.12972.
  15. Moody, Daniela I., et al. “Land Cover Classification in Multispectral Imagery Using Clustering of Sparse Approximations over Learned Feature Dictionaries”. Journal of Applied Remote Sensing, vol. 8, no. 1, 2014, p. 084793, https://doi.org/10.1117/1.JRS.8.084793.
  16. Riley, William J., et al. “Long Residence Times of Rapidly Decomposable Soil Organic Matter: Application of a Multi-Phase, Multi-Component, and Vertically Resolved Model (BAMS1) to Soil Carbon Dynamics”. Geoscientific Model Development, vol. 7, no. 4, 2014, pp. 1335-5, https://doi.org/10.5194/gmd-7-1335-2014.
  17. Bouskill, Nicholas J., et al. “Meta-Analysis of High-Latitude Nitrogen-Addition and Warming Studies Implies Ecological Mechanisms Overlooked by Land Models”. Biogeosciences, vol. 11, no. 23, 2014, pp. 6969-83, https://doi.org/10.5194/bg-11-6969-201410.5194/bg-11-6969-2014-supplement.
  18. Wullschleger, Stan D., et al. “Plant Functional Types in Earth System Models: Past Experiences and Future Directions for Application of Dynamic Vegetation Models in High-Latitude Ecosystems”. Annals of Botany, vol. 114, no. 1, 2014, pp. 1-16, https://doi.org/10.1093/aob/mcu077.
  19. Tang, Jinyun Y., and William J. Riley. “Technical Note: Simple Formulations and Solutions of the Dual-Phase Diffusive Transport for Biogeochemical Modeling”. Biogeosciences , vol. 11, no. 11, 2014, pp. 3721–3728, https://doi.org/doi.org/10.5194/bg-11-3721-2014.
  20. Hayes, Daniel J., et al. “The Impacts of Recent Permafrost Thaw on land–atmosphere Greenhouse Gas Exchange”. Environmental Research Letters, vol. 9, no. 4, 2014, p. 045005, https://doi.org/10.1088/1748-9326/9/4/045005.