Publications

Displaying 61 - 80 of 80
By year of publication, then alphabetical by title
  1. Weston, David J., et al. “Sphagnum Physiology in the Context of Changing Climate: Emergent Influences of Genomics, Modelling and Host-Microbiome Interactions on Understanding Ecosystem Function”. Plant, Cell & Environment, vol. 38, no. 9, 2015, pp. 1737-51, https://doi.org/10.1111/pce.12458.
  2. RoyChowdhury, Taniya, et al. “Stoichiometry and Temperature Sensitivity of Methanogenesis and CO<sub>2< Sub> Production from Saturated Polygonal Tundra in Barrow, Alaska”. Global Change Biology, vol. 21, no. 2, 2015, pp. 722-37, https://doi.org/10.1111/gcb.12762.
  3. Maggi, Federico, and William J. Riley. “The Effect of Temperature on the Rate, Affinity, and 15N Fractionation of NO3 − During Biological Denitrification in Soils”. Biogeochemistry, vol. 124, no. 1-3, 2015, pp. 235-53, https://doi.org/10.1007/s10533-015-0095-2.
  4. Iversen, Colleen M., et al. “The Unseen Iceberg: Plant Roots in Arctic Tundra”. New Phytologist, vol. 205, no. 1, 2015, pp. 34-58, https://doi.org/10.1111/nph.13003.
  5. Devarakonda, Ranjeet, et al. “Use of a Metadata Documentation and Search Tool for Large Data Volumes: The NGEE Arctic Example”. 2015 IEEE International Conference on Big Data (Big Data), 2015, https://doi.org/10.1109/BigData.2015.7364086.
  6. Atchley, Adam L., et al. “Using Field Observations to Inform Thermal Hydrology Models of Permafrost Dynamics With ATS (v0.83)”. Geoscientific Model Development, vol. 8, no. 9, 2015, pp. 2701-22, https://doi.org/10.5194/gmd-8-2701-2015.
  7. Tang, Jinyun Y., and William J. Riley. “Weaker Soil carbon–climate Feedbacks Resulting from Microbial and Abiotic Interactions”. Nature Climate Change, vol. 5, no. 1, 2015, pp. 56-60, https://doi.org/10.1038/nclimate2438.
  8. Bohn, Theodore J., et al. “WETCHIMP-WSL: Intercomparison of Wetland Methane Emissions Models over West Siberia”. Biogeosciences, vol. 12, no. 11, 2015, pp. 3321-49, https://doi.org/https://doi.org/10.5194/bg-12-3321-2015.
  9. Tang, Jinyun Y., and William J. Riley. “A Total Quasi-Steady-State Formulation of Substrate Uptake Kinetics in Complex Networks and an Example Application to Microbial Litter Decomposition”. Biogeosciences, vol. 10, no. 12, 2013, pp. 8329-51, https://doi.org/10.5194/bg-10-8329-201310.5194/bg-10-8329-2013-supplement.
  10. Skurikhin, Alexei N., et al. “Arctic Tundra Ice-Wedge Landscape Characterization by Active Contours Without Edges and Structural Analysis Using High-Resolution Satellite Imagery”. Remote Sensing Letters, vol. 4, no. 11, 2013, pp. 1077-86, https://doi.org/10.1080/2150704X.2013.840404.
  11. Dafflon, Baptiste, et al. “Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data”. Vadose Zone Journal, vol. 12, no. 4, 2013, https://doi.org/10.2136/vzj2012.0161.
  12. Cunningham, Philip, et al. “Large-Eddy Simulations of Air Flow and Turbulence Within and Around Low-Aspect-Ratio Cylindrical Open-Top Chambers”. Journal of Applied Meteorology and Climatology, vol. 52, no. 8, 2013, pp. 1716-37, https://doi.org/10.1175/JAMC-D-12-041.1.
  13. Painter, Scott L., et al. “Modeling Challenges for Predicting Hydrologic Response to Degrading Permafrost”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 221-4, https://doi.org/10.1007/s10040-012-0917-4.
  14. Frampton, Andrew, et al. “Permafrost Degradation and Subsurface-Flow Changes Caused by Surface Warming Trends”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 271-80, https://doi.org/10.1007/s10040-012-0938-z.
  15. Hinzman, Larry D., et al. “Preface: Hydrogeology of Cold Regions”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 1-4, https://doi.org/10.1007/s10040-012-0943-2.
  16. Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.
  17. Wu, Yuxin, et al. “Remote Monitoring of freeze–thaw Transitions in Arctic Soils Using the Complex Resistivity Method”. Vadose Zone Journal, vol. 12, no. 1, 2013, https://doi.org/10.2136/vzj2012.0062.
  18. Hoffman, Forrest M., et al. “Representativeness-Based Sampling Network Design for the State of Alaska”. Landscape Ecology, vol. 28, no. 8, 2013, pp. 1567-86, https://doi.org/10.1007/s10980-013-9902-0.
  19. Hinzman, Larry D., et al. “Trajectory of the Arctic As an Integrated System”. Ecological Applications, vol. 23, no. 8, 2013, pp. 1837-68, https://doi.org/10.1890/11-1498.1.
  20. Riley, William J. “Using Model Reduction to Predict the Soil-Surface C<sup>18< sup> Carbon Dioxide Flux: An Example of Representing Complex Biogeochemical Dynamics in a Computationally Efficient Manner”. Geoscientific Model Development, vol. 6, no. 2, 2013, pp. 345-52, https://doi.org/10.5194/gmd-6-345-2013.