Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions

Abstract

The large uncertainty in soil carbon–climate feedback predictions has been attributed to the incorrect parameterization of decomposition temperature sensitivity (Q10; ref. 1) and microbial carbon use efficiency2. Empirical experiments have found that these parameters vary spatiotemporally3, 4, 5, 6, but such variability is not included in current ecosystem models7, 8, 9, 10, 11, 12, 13. Here we use a thermodynamically based decomposition model to test the hypothesis that this observed variability arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. We show that because mineral surfaces interact with substrates, enzymes and microbes, both Q10 and microbial carbon use efficiency are hysteretic (so that neither can be represented by a single static function) and the conventional labile and recalcitrant substrate characterization with static temperature sensitivity is flawed. In a 4-K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker soil carbon–climate feedbacks than did the static Q10 and static carbon use efficiency model when forced with yearly, daily and hourly variable temperatures. These results imply that current Earth system models probably overestimate the response of soil carbon stocks to global warming. Future ecosystem models should therefore consider the dynamic interactions between sorptive mineral surfaces, substrates and microbial processes.

Journal Article
Year of Publication
2015
Author
Journal
Nature Climate Change
Volume
5
Issue
1
Number of Pages
56 - 60
Date Published
May-11-2015
DOI
10.1038/nclimate2438
ISSN Number
1758-678X
URL
http://www.nature.com/doifinder/10.1038/nclimate2438
Short Title
Nature Climate change
Download citation