Publications

Displaying 21 - 40 of 65
By year of publication, then alphabetical by title
  1. Schore, Aiden I. G., et al. “Nitrogen Fixing Shrubs Advance the Pace of Tall-Shrub Expansion in Low-Arctic Tundra”. Communications Earth & Environment, vol. 4, 2023, https://doi.org/https://doi.org/10.1038/s43247-023-01098-5.
  2. Chang, Kuang‐Yu, et al. “Observational Constraints Reduce Model Spread But Not Uncertainty in Global Wetland Methane Emission Estimates”. Global Change Biology, vol. 29, no. 15, 2023, pp. 4298-12, https://doi.org/10.1111/gcb.16755.
  3. Del Vecchio, Joanmarie, et al. “Patterns and Rates of Soil Movement and Shallow Failures across Several Small Watersheds on the Seward Peninsula, Alaska”. Earth Surface Dynamics, vol. 11, no. 2, 2023, pp. 227-45, https://doi.org/10.5194/esurf-11-227-2023.
  4. Yang, Dedi, et al. “PiCAM: A Raspberry Pi-Based Open-Source, Low-Power Camera System for Monitoring Plant Phenology in Arctic Environments”. Methods in Ecology and Evolution, vol. 14, 2023, https://doi.org/10.1111/2041-210X.14231.
  5. Mevenkamp, Hannah, et al. “Reducing Uncertainty of High-Latitude Ecosystem Models through Identification of Key Parameters”. Environmental Research Letters, vol. 18, 2023, https://doi.org/10.1088/1748-9326/ace637.
  6. Tang, Jinyun, and William J. Riley. “Revising the Dynamic Energy Budget Theory With a New Reserve Mobilization Rule and Three Example Applications to Bacterial Growth”. Soil Biology and Biochemistry, vol. 178, 2023, p. 108954, https://doi.org/10.1016/j.soilbio.2023.108954.
  7. Wielandt, Stijn, et al. “TDD LoRa and Delta Encoding in Low-Power Networks of Environmental Sensor Arrays for Temperature and Deformation Monitoring”. Journal of Signal Processing Systems, 2023, https://doi.org/10.1007/s11265-023-01834-2.
  8. Santos, Fernanda, et al. “The Eco-Evolutionary Role of Fire in Shaping Terrestrial Ecosystems”. Functional Ecology, vol. 37, no. 8, 2023, https://doi.org/https://doi.org/10.1111/1365-2435.14387.
  9. Ali, Ashehad A., et al. “A Global Scale Mechanistic Model of Photosynthetic Capacity (LUNA V1.0)”. Geoscientific Model Development, vol. 9, no. 2, 2016, pp. 587-06, https://doi.org/10.5194/gmd-9-587-201610.5194/gmd-9-587-2016-supplement.
  10. Liu, Yaning, et al. “A Hybrid Reduced-Order Model of Fine-Resolution Hydrologic Simulations at a Polygonal Tundra Site”. Vadose Zone Journal, vol. 15, no. 2, 2016, https://doi.org/10.2136/vzj2015.05.0068.
  11. Xu, Xiyan, et al. “A Multi-Scale Comparison of Modeled and Observed Seasonal Methane Emissions in Northern Wetlands”. Biogeosciences, vol. 13, no. 17, 2016, pp. 5043-56, https://doi.org/10.5194/bg-13-5043-201610.5194/bg-13-5043-2016-supplement.
  12. Dou, Shan, et al. “A Rock-Physics Investigation of Unconsolidated Saline Permafrost: P-Wave Properties from Laboratory Ultrasonic Measurements”. GEOPHYSICS, vol. 81, no. 1, 2016, pp. WA233 - WA245, https://doi.org/10.1190/geo2015-0176.1.
  13. De Kauwe, Martin G., et al. “A Test of the ‘one-Point method’ for Estimating Maximum Carboxylation Capacity from Field-Measured, Light-Saturated Photosynthesis”. New Phytologist, no. 3, 2016, pp. 1130-44, https://doi.org/10.1111/nph.13815.
  14. Throckmorton, Heather M., et al. “Active Layer Hydrology in an Arctic Tundra Ecosystem: Quantifying Water Sources and Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016, https://doi.org/10.1002/hyp.10883.
  15. Tang, Guoping, et al. “Addressing Numerical Challenges in Introducing a Reactive Transport Code into a Land Surface Model: A Biogeochemical Modeling Proof-of-Concept With CLM–PFLOTRAN 1.0”. Geoscientific Model Development, vol. 9, no. 3, 2016, pp. 927-46, https://doi.org/10.5194/gmd-9-927-2016.
  16. Tang, Guoping, et al. “Biogeochemical Model of Carbon Dioxide and Methane Production in Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1-31, https://doi.org/10.5194/bg-2016-20710.5194/bg-2016-207-supplement10.5194/bg-2016-207-RC110.5194/bg-2016-207-RC210.5194/bg-2016-207-RC310.5194/bg-2016-207-AC110.5194/bg-2016-207-AC2.
  17. Olefeldt, David, et al. “Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes”. Nature Communications, vol. 7, 2016, p. 13043, https://doi.org/10.1038/ncomms13043.
  18. Euskirchen, Eugénie S., et al. “Consequences of Changes in Vegetation and Snow Cover for Climate Feedbacks in Alaska and Northwest Canada”. Environmental Research Letters, vol. 11, no. 10, 2016, https://doi.org/10.1088/1748-9326/11/10/105003.
  19. Parazoo, Nicholas C., et al. “Detecting Regional Patterns of Changing CO <sub>2< Sub> Flux in Alaska”. Proceedings of the National Academy of Sciences, vol. 113, no. 28, 2016, pp. 7733-8, https://doi.org/10.1073/pnas.1601085113.
  20. Harp, Dylan R., et al. “Effect of Soil Property Uncertainties on Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, vol. 10, no. 1, 2016, pp. 341-58, https://doi.org/10.5194/tc-10-341-201610.5194/tc-10-341-2016-supplement.