Publications by Author

Authors who are active project participants

  • David E. Graham

    2022

    • Zheng, Jianqiu, et al. “Quantifying PH Buffering Capacity in Acidic, Organic-Rich Arctic Soils: Measurable Proxies and Implications for Soil Carbon Degradation”. Geoderma, vol. 424, 2022, p. 116003, https://doi.org/10.1016/j.geoderma.2022.116003.
    • Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.

    2021

    • Roy_Chowdhury, Taniya, et al. “Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon SoilsData_Sheet_1.Docx”. Frontiers in Microbiology, vol. 11, 2021, https://doi.org/10.3389/fmicb.2020.61651810.3389/fmicb.2020.616518.s001.

    2020

    • Philben, Michael J., et al. “Anaerobic Respiration Pathways and Response to Increased Substrate Availability of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, vol. 22, no. 10, 2020, pp. 2070-83, https://doi.org/10.1039/D0EM00124D.
    • Philben, Michael J., et al. “Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 125, no. 7, 2020, https://doi.org/10.1029/2019JG005512.

    2019

    • Zheng, Jianqiu, et al. “Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization”. Biogeosciences, vol. 16, no. 3, 2019, pp. 663-80, https://doi.org/10.5194/bg-16-663-2019.
    • Yang, Ziming, et al. “Temperature Sensitivity of Mineral-Enzyme Interactions on the Hydrolysis of Cellobiose and Indican by Beta-Glucosidase”. Science of The Total Environment, vol. 686, 2019, pp. 1194-01, https://doi.org/10.1016/j.scitotenv.2019.05.479.

    2018

    • Jubb, Aaron M., et al. “Characterization of Iron Oxide Nanoparticle Films at the air–water Interface in Arctic Tundra Waters”. Science of The Total Environment, vol. 633, 2018, pp. 1460-8, https://doi.org/10.1016/j.scitotenv.2018.03.332.
    • Zheng, Jianqiu, et al. “Impacts of Temperature and Soil Characteristics on Methane Production and Oxidation in Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1-27, https://doi.org/10.5194/bg-2017-56610.5194/bg-2017-566-supplement10.5194/bg-2017-566-RC110.5194/bg-2017-566-RC210.5194/bg-2017-566-AC110.5194/bg-2017-566-AC2.
    • Chen, Hongmei, et al. “Molecular Insights into Arctic Soil Organic Matter Degradation under Warming”. Environmental Science & Technology, vol. 52, no. 8, 2018, pp. 4555-64, https://doi.org/10.1021/acs.est.7b05469.

    2017

    • Herndon, Elizabeth M., et al. “Influence of Iron Redox Cycling on Organo-Mineral Associations in Arctic Tundra Soil”. Geochimica Et Cosmochimica Acta, vol. 207, 2017, pp. 210-31, https://doi.org/10.1016/j.gca.2017.02.034.
    • Grant, Robert F., et al. “Mathematical Modeling of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation”. Journal of Geophysical Research: Biogeosciences, vol. 122, no. 12, 2017, pp. 3161-73, https://doi.org/10.1002/2017JG004035.
    • Yang, Ziming, et al. “Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment”. Frontiers in Microbiology, vol. 27, no. 3, 2017, https://doi.org/10.3389/fmicb.2017.01741.

    2016

    • Throckmorton, Heather M., et al. “Active Layer Hydrology in an Arctic Tundra Ecosystem: Quantifying Water Sources and Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016, https://doi.org/10.1002/hyp.10883.
    • Tang, Guoping, et al. “Biogeochemical Model of Carbon Dioxide and Methane Production in Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1-31, https://doi.org/10.5194/bg-2016-20710.5194/bg-2016-207-supplement10.5194/bg-2016-207-RC110.5194/bg-2016-207-RC210.5194/bg-2016-207-RC310.5194/bg-2016-207-AC110.5194/bg-2016-207-AC2.
    • Yang, Ziming, et al. “Effects of Warming on the Degradation and Production of Low-Molecular-Weight Labile Organic Carbon in an Arctic Tundra Soil”. Soil Biology and Biochemistry, vol. 95, 2016, pp. 202-11, https://doi.org/10.1016/j.soilbio.2015.12.022.
    • Schädel, Christina, et al. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils”. Nature Climate Change, vol. 6, no. 10, 2016, pp. 950-3, https://doi.org/10.1038/nclimate3054.
    • Xu, Xiaofeng, et al. “Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems”. Biogeosciences, vol. 13, no. 12, 2016, pp. 3735-5, https://doi.org/10.5194/bg-13-3735-2016.
    • Yang, Ziming, et al. “Warming Increases Methylmercury Production in an Arctic Soil”. Environmental Pollution, vol. 214, 2016, pp. 504-9, https://doi.org/10.1016/j.envpol.2016.04.069.

    2015

    • Xu, Xiaofeng, et al. “A Microbial Functional Group-Based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 7, 2015, pp. 1315-33, https://doi.org/10.1002/2015JG002935.
    • Herndon, Elizabeth M., et al. “Geochemical Drivers of Organic Matter Decomposition in Arctic Tundra Soils”. Biogeochemistry, vol. 126, no. 3, 2015, pp. 397-14, https://doi.org/10.1007/s10533-015-0165-5.
    • Mann, Benjamin F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. PLOS ONE, vol. 10, no. 6, 2015, https://doi.org/10.1371/journal.pone.0130557.
    • Heikoop, Jeffrey Martin, et al. “Isotopic Identification of Soil and Permafrost Nitrate Sources in an Arctic Tundra Ecosystem”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 6, 2015, pp. 1000-17, https://doi.org/10.1002/2014JG002883.
    • Newman, Brent D., et al. “Microtopographic and Depth Controls on Active Layer Chemistry in Arctic Polygonal Ground”. Geophysical Research Letters, vol. 42, no. 6, 2015, pp. 1808-17, https://doi.org/10.1002/2014GL062804.
    • Herndon, Elizabeth M., et al. “Pathways of Anaerobic Organic Matter Decomposition in Tundra Soils from Barrow, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 120, no. 11, 2015, pp. 2345-59, https://doi.org/10.1002/2015JG003147.
    • RoyChowdhury, Taniya, et al. “Stoichiometry and Temperature Sensitivity of Methanogenesis and CO<sub>2< Sub> Production from Saturated Polygonal Tundra in Barrow, Alaska”. Global Change Biology, vol. 21, no. 2, 2015, pp. 722-37, https://doi.org/10.1111/gcb.12762.

    2012

    • Graham, David E., et al. “Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation”. The ISME Journal, vol. 6, no. 4, 2012, pp. 709-12, https://doi.org/10.1038/ismej.2011.163.
  • Isla H. Myers-Smith

    2022

    • Curasi, Salvatore R., et al. “Range Shifts in a Foundation Sedge Potentially Induce Large Arctic Ecosystem Carbon Losses and Gains”. Environmental Research Letters, vol. 17, no. 4, 2022, p. 045024, https://doi.org/10.1088/1748-9326/ac6005.

    2021

    • Mekonnen, Zelalem A., et al. “Arctic Tundra Shrubification: A Review of Mechanisms and Impacts on Ecosystem Carbon Balance”. Environmental Research Letters, vol. 16, no. 5, 2021, p. 053001, https://doi.org/10.1088/1748-9326/abf28b.
    • Kropp, Heather, et al. “Shallow Soils Are Warmer under Trees and Tall Shrubs across Arctic and Boreal Ecosystems”. Environmental Research Letters, vol. 16, no. 1, 2021, p. 015001, https://doi.org/10.1088/1748-9326/abc994.

    2017

    • Walker, Anthony P., et al. “Trait Covariance: The Functional Warp of Plant Diversity?”. New Phytologist, vol. 216, no. 4, 2017, pp. 976-80, https://doi.org/10.1111/nph.14853.
  • Verity G. Salmon

    2022

    • McCaully, Rachel E., et al. “High Temporal and Spatial Variability of Nitrate on an Alaskan Hillslope Dominated by Alder Shrubs”. The Cryosphere, 2022, https://doi.org/10.5194/tc-2021-166.

    2021

    • Euskirchen, Eugénie S., et al. “Assessing Dynamic Vegetation Model Parameter Uncertainty across Alaskan Arctic Tundra Plant Communities”. Ecological Applications, 2021, https://doi.org/10.1002/eap.2499.
    • Sulman, Benjamin N., et al. “Integrating Arctic Plant Functional Types in a Land Surface Model Using Above‐ and Belowground Field Observations”. Journal of Advances in Modeling Earth Systems, vol. 13, no. 4, 2021, https://doi.org/10.1029/2020MS002396.
    • Yang, Dedi, et al. “Landscape-Scale Characterization of Arctic Tundra Vegetation Composition, Structure, and Function With a Multi-Sensor Unoccupied Aerial System”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 085005, https://doi.org/10.1088/1748-9326/ac1291.
    • Kropp, Heather, et al. “Shallow Soils Are Warmer under Trees and Tall Shrubs across Arctic and Boreal Ecosystems”. Environmental Research Letters, vol. 16, no. 1, 2021, p. 015001, https://doi.org/10.1088/1748-9326/abc994.
    • Mekonnen, Zelalem A., et al. “Topographical Controls on Hillslope‐Scale Hydrology Drive Shrub Distributions on the Seward Peninsula, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 2, 2021, https://doi.org/10.1029/2020JG005823.

    2020

    • Yang, Dedi, et al. “A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra”. Remote Sensing, vol. 12, no. 16, 2020, p. 2638, https://doi.org/10.3390/rs12162638.

    2019

    • Salmon, Verity G., et al. “Alder Distribution and Expansion across a Tundra Hillslope: Implications for Local N Cycling”. Frontiers in Plant Science, vol. 10, 2019, https://doi.org/10.3389/fpls.2019.01099.

    2017

    • Mauritz, Marguerite, et al. “Nonlinear Carbon Dioxide Flux Response to 7 years of Experimentally Induced Permafrost Thaw”. Global Change Biology, no. 23, 2017, pp. 3646–3666, https://doi.org/10.1111/gcb.13661.