Publications by Author

Authors who are active project participants

  • Baptiste Dafflon

    2022

    • Dafflon, B., et al. “A Distributed Temperature Profiling System For Vertically And Laterally Dense Acquisition Of Soil And Snow Temperature”. The Cryosphere, 2022, pp. 719 - 736.
    • Arendt, C. A., et al. “Increased Arctic No3− Availability As A Hydrogeomorphic Consequence Of Permafrost Degradation And Landscape Drying”. Nitrogen, 2022, pp. 314 - 332.
    • Wielandt, S., et al. “Low-Power, Flexible Sensor Arrays With Solderless Board-To-Board Connectors For Monitoring Soil Deformation And Temperature”. Sensors, 2022, p. 2814.
    • Shirley, I. A., et al. “Rapidly Changing High-Latitude Seasonality: Implications For The 21St Century Carbon Cycle In Alaska”. Environmental Research Letters, 2022, p. 014032.
    • Bennett, K. E., et al. “Spatial Patterns Of Snow Distribution For Improved Earth System Modelling In The Arctic”. The Cryosphere, 2022.

    2021

    • Uhlemann, S., et al. “Geophysical Monitoring Shows That Spatial Heterogeneity In Thermohydrological Dynamics Reshapes A Transitional Permafrost System”. Geophysical Research Letters, 2021.
    • Wainwright, H. M., et al. “High-Resolution Spatio-Temporal Estimation Of Net Ecosystem Exchange In Ice-Wedge Polygon Tundra Using In Situ Sensors And Remote Sensing Data”. Land, 2021, p. 722.

    2020

    • Jafarov, E. E., et al. “Estimation Of Subsurface Porosities And Thermal Conductivities Of Polygonal Tundra By Coupled Inversion Of Electrical Resistivity, Temperature, And Moisture Content Data”. The Cryosphere, 2020, pp. 77 - 91.
    • Wales, N. A., et al. “Understanding The Relative Importance Of Vertical And Horizontal Flow In Ice-Wedge Polygons”. Hydrology And Earth System Sciences, 2020, pp. 1109-1129.

    2019

    • Léger, E., et al. “A Distributed Temperature Profiling Method For Assessing Spatial Variability In Ground Temperatures In A Discontinuous Permafrost Region Of Alaska”. The Cryosphere, 2019, pp. 2853-2867.
    • Arora, B., et al. “Evaluating Temporal Controls On Greenhouse Gas (Ghg) Fluxes In An Arctic Tundra Environment: An Entropy-Based Approach”. Science Of The Total Environment, 2019, pp. 284 - 299.

    2018

    • Bisht, G., et al. “Impacts Of Microtopographic Snow Redistribution And Lateral Subsurface Processes On Hydrologic And Thermal States In An Arctic Polygonal Ground Ecosystem: A Case Study Using Elm-3D V1.0”. Geoscientific Model Development, 2018, pp. 61-76.
    • Tran, A. P., et al. “Spatial And Temporal Variations Of Thaw Layer Thickness And Its Controlling Factors Identified Using Time-Lapse Electrical Resistivity Tomography And Hydro-Thermal Modeling”. Journal Of Hydrology, 2018, pp. 751-763.

    2017

    • Dafflon, B., et al. “Coincident Aboveground And Belowground Autonomous Monitoring To Quantify Covariability In Permafrost, Soil, And Vegetation Properties In Arctic Tundra”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 1321-1342.
    • Tran, A. P., et al. “Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling To Estimate Soil Organic Content And Explore Associated Hydrological And Thermal Dynamics In An Arctic Tundra”. The Cryosphere, 2017, pp. 2089-2109.
    • Wu, Y., et al. “Electrical And Seismic Response Of Saline Permafrost Soil During Freeze - Thaw Transition”. Journal Of Applied Geophysics, 2017, pp. 16-26.
    • Wainwright, H. M., et al. “Mapping Snow Depth Within A Tundra Ecosystem Using Multiscale Observations And Bayesian Methods”. The Cryosphere, 2017, pp. 857 - 875.
    • Léger, E., et al. “Quantification Of Arctic Soil And Permafrost Properties Using Ground-Penetrating Radar And Electrical Resistivity Tomography Datasets”. Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 2017, pp. 4348 - 4359.

    2016

    • Dafflon, B., et al. “Geophysical Estimation Of Shallow Permafrost Distribution And Properties In An Ice-Wedge Polygon-Dominated Arctic Tundra Region”. Geophysics, 2016, pp. WA247 - WA263.
    • Dafflon, B., et al. “Quantification Of Arctic Soil And Permafrost Properties Using Ground Penetrating Radar”. 2016 16Th International Conference On Ground Penetrating Radar (Gpr) , 2016.

    2015

    • Wainwright, H. M., et al. “Identifying Multiscale Zonation And Assessing The Relative Importance Of Polygon Geomorphology On Carbon Fluxes In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 788 - 808.

    2014

    • Gangodagamage, C., et al. “Extrapolating Active Layer Thickness Measurements Across Arctic Polygonal Terrain Using Lidar And Ndvi Data Sets”. Water Resources Research, 2014, pp. 6339 - 6357.

    2013

    • Dafflon, B., et al. “Electrical Conductivity Imaging Of Active Layer And Permafrost In An Arctic Ecosystem, Through Advanced Inversion Of Electromagnetic Induction Data”. Vadose Zone Journal, 2013.
    • Hubbard, S. S., et al. “Quantifying And Relating Land-Surface And Subsurface Variability In Permafrost Environments Using Lidar And Surface Geophysical Datasets”. Hydrogeology Journal, 2013, pp. 149 - 169.
  • David E. Graham

    2022

    • Zheng, J., et al. “Quantifying Ph Buffering Capacity In Acidic, Organic-Rich Arctic Soils: Measurable Proxies And Implications For Soil Carbon Degradation”. Geoderma, 2022, p. 116003.
    • Zhang, L., et al. “Unravelling Biogeochemical Drivers Of Methylmercury Production In An Arctic Fen Soil And A Bog Soil”. Environmental Pollution, 2022, p. 118878.

    2021

    • Roy_Chowdhury, T., et al. “Temporal, Spatial, And Temperature Controls On Organic Carbon Mineralization And Methanogenesis In Arctic High-Centered Polygon Soilsdata_Sheet_1.Docx”. Frontiers In Microbiology, 2021.

    2020

    • Philben, M. J., et al. “Anaerobic Respiration Pathways And Response To Increased Substrate Availability Of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, 2020, pp. 2070 - 2083.
    • Philben, M. J., et al. “Influences Of Hillslope Biogeochemistry On Anaerobic Soil Organic Matter Decomposition In A Tundra Watershed”. Journal Of Geophysical Research: Biogeosciences, 2020.

    2019

    • Zheng, J., et al. “Modeling Anaerobic Soil Organic Carbon Decomposition In Arctic Polygon Tundra: Insights Into Soil Geochemical Influences On Carbon Mineralization”. Biogeosciences, 2019, pp. 663 - 680.
    • Yang, Z., et al. “Temperature Sensitivity Of Mineral-Enzyme Interactions On The Hydrolysis Of Cellobiose And Indican By Beta-Glucosidase”. Science Of The Total Environment, 2019, pp. 1194 - 1201.

    2018

    • Jubb, A. M., et al. “Characterization Of Iron Oxide Nanoparticle Films At The Air–Water Interface In Arctic Tundra Waters”. Science Of The Total Environment, 2018, pp. 1460-1468.
    • Zheng, J., et al. “Impacts Of Temperature And Soil Characteristics On Methane Production And Oxidation In Arctic Polygonal Tundra”. Biogeosciences Discussions, 2018, pp. 1 - 27.
    • Chen, H., et al. “Molecular Insights Into Arctic Soil Organic Matter Degradation Under Warming”. Environmental Science & Technology, 2018, pp. 4555-4564.

    2017

    • Herndon, E. M., et al. “Influence Of Iron Redox Cycling On Organo-Mineral Associations In Arctic Tundra Soil”. Geochimica Et Cosmochimica Acta, 2017, pp. 210-231.
    • Grant, R. F., et al. “Mathematical Modeling Of Arctic Polygonal Tundra With Ecosys: 1. Microtopography Determines How Active Layer Depths Respond To Changes In Temperature And Precipitation”. Journal Of Geophysical Research: Biogeosciences, 2017, pp. 3161-3173.
    • Yang, Z., et al. “Microbial Community And Functional Gene Changes In Arctic Tundra Soils In A Microcosm Warming Experiment”. Frontiers In Microbiology, 2017.

    2016

    • Throckmorton, H. M., et al. “Active Layer Hydrology In An Arctic Tundra Ecosystem: Quantifying Water Sources And Cycling Using Water Stable Isotopes”. Hydrological Processes, 2016.
    • Tang, G., et al. “Biogeochemical Model Of Carbon Dioxide And Methane Production In Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1 - 31.
    • Yang, Z., et al. “Effects Of Warming On The Degradation And Production Of Low-Molecular-Weight Labile Organic Carbon In An Arctic Tundra Soil”. Soil Biology And Biochemistry, 2016, pp. 202 - 211.
    • Schädel, C., et al. “Potential Carbon Emissions Dominated By Carbon Dioxide From Thawed Permafrost Soils”. Nature Climate Change, 2016, pp. 950 - 953.
    • Xu, X., et al. “Reviews And Syntheses: Four Decades Of Modeling Methane Cycling In Terrestrial Ecosystems”. Biogeosciences, 2016, pp. 3735 - 3755.
    • Yang, Z., et al. “Warming Increases Methylmercury Production In An Arctic Soil”. Environmental Pollution, 2016, pp. 504 - 509.

    2015

    • Xu, X., et al. “A Microbial Functional Group-Based Module For Simulating Methane Production And Consumption: Application To An Incubated Permafrost Soil”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1315 - 1333.
    • Herndon, E. M., et al. “Geochemical Drivers Of Organic Matter Decomposition In Arctic Tundra Soils”. Biogeochemistry, 2015, pp. 397 - 414.
    • Mann, B. F., et al. “Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry”. Plos One, 2015.
    • Heikoop, J. M., et al. “Isotopic Identification Of Soil And Permafrost Nitrate Sources In An Arctic Tundra Ecosystem”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 1000 - 1017.
    • Newman, B. D., et al. “Microtopographic And Depth Controls On Active Layer Chemistry In Arctic Polygonal Ground”. Geophysical Research Letters, 2015, pp. 1808 - 1817.
    • Herndon, E. M., et al. “Pathways Of Anaerobic Organic Matter Decomposition In Tundra Soils From Barrow, Alaska”. Journal Of Geophysical Research: Biogeosciences, 2015, pp. 2345 - 2359.
    • RoyChowdhury, T., et al. “Stoichiometry And Temperature Sensitivity Of Methanogenesis And Co2 Production From Saturated Polygonal Tundra In Barrow, Alaska”. Global Change Biology, 2015, pp. 722 - 737.

    2012

    • Graham, D. E., et al. “Microbes In Thawing Permafrost: The Unknown Variable In The Climate Change Equation”. The Isme Journal, 2012, pp. 709 - 712.