Publications

Displaying 21 - 35 of 35
By year of publication, then alphabetical by title
  1. Yuan, Fengming, and Shuhua Yi. “Responses of Boreal Forest Ecosystems and Permafrost to Climate Change and Disturbances: A Modeling Perspective”. Arctic Hydrology, Permafrost and Ecosystems, Springer International Publishing, 2021, pp. 849-92, https://doi.org/10.1007/978-3-030-50930-9_29.
  2. Kropp, Heather, et al. “Shallow Soils Are Warmer under Trees and Tall Shrubs across Arctic and Boreal Ecosystems”. Environmental Research Letters, vol. 16, no. 1, 2021, p. 015001, https://doi.org/10.1088/1748-9326/abc994.
  3. Watts, Jennifer D., et al. “Soil Respiration Strongly Offsets Carbon Uptake in Alaska and Northwest Canada”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 084051, https://doi.org/10.1088/1748-9326/ac1222.
  4. Virkkala, Anna-Maria, et al. “Statistical Upscaling of Ecosystem Carbon Dioxide Fluxes across the Terrestrial Tundra and Boreal Domain: Regional Patterns and Uncertainties”. Global Change Biology, vol. 27, no. 17, 2021, pp. 4040-59, https://doi.org/10.1111/gcb.v27.1710.1111/gcb.15659.
  5. Roy_Chowdhury, Taniya, et al. “Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon SoilsData_Sheet_1.Docx”. Frontiers in Microbiology, vol. 11, 2021, https://doi.org/10.3389/fmicb.2020.61651810.3389/fmicb.2020.616518.s001.
  6. Mekonnen, Zelalem A., et al. “Topographical Controls on Hillslope‐Scale Hydrology Drive Shrub Distributions on the Seward Peninsula, Alaska”. Journal of Geophysical Research: Biogeosciences, vol. 126, no. 2, 2021, https://doi.org/10.1029/2020JG005823.
  7. Rogers, Alistair, et al. “Triose Phosphate Utilization Limitation: An Unnecessary Complexity in Terrestrial Biosphere Model Representation of Photosynthesis”. New Phytologist, 2021, https://doi.org/10.1111/nph.17092.
  8. Ladd, Mallory P., et al. “Untargeted Exometabolomics Provides a Powerful Approach to Investigate Biogeochemical Hotspots With Vegetation and Polygon Type in Arctic Tundra Soils”. Soil Systems, vol. 5, no. 1, 2021, p. 10, https://doi.org/10.3390/soilsystems5010010.
  9. Debolskiy, Matvey V., et al. “Water Balance Response of Permafrost-Affected Watersheds to Changes in Air Temperatures”. Environmental Research Letters, vol. 16, no. 8, 2021, p. 084054, https://doi.org/10.1088/1748-9326/ac12f3.
  10. Hanson, Paul J., et al. “A Method for Experimental Heating of Intact Soil Profiles for Application to Climate Change Experiments”. Global Change Biology, vol. 17, no. 2, 2011, pp. 1083-96, https://doi.org/10.1111/gcb.2010.17.issue-210.1111/j.1365-2486.2010.02221.x.
  11. Xu, Chonggang, et al. “Importance of Feedback Loops Between Soil Inorganic Nitrogen and Microbial Communities in the Heterotrophic Soil Respiration Response to Global Warming”. Nature Reviews Microbiology, vol. 9, no. 3, 2011, pp. 222-, https://doi.org/10.1038/nrmicro2439-c1.
  12. Frampton, Andrew, et al. “Non-Isothermal, Three-Phase Simulations of Near-Surface Flows in a Model Permafrost System under Seasonal Variability and Climate Change”. Journal of Hydrology, vol. 403, no. 3-4, 2011, pp. 352-9, https://doi.org/10.1016/j.jhydrol.2011.04.010.
  13. Koven, Charles D., et al. “Permafrost Carbon-Climate Feedbacks Accelerate Global Warming”. Proceedings of the National Academy of Sciences, vol. 108, no. 36, 2011, pp. 14769-74, https://doi.org/10.1073/pnas.1103910108.
  14. Wullschleger, Stan D., et al. “Planning the Next Generation of Arctic Ecosystem Experiments”. Eos, Transactions, American Geophysical Union, vol. 92, no. 17, 2011, p. 145, https://doi.org/10.1029/2011EO170006.
  15. Rowland, Joel C., et al. “The Role of Advective Heat Transport in Talik Development Beneath Lakes and Ponds in Discontinuous Permafrost”. Geophysical Research Letters, vol. 38, no. 17, 2011, https://doi.org/10.1029/2011GL048497.