Publications

Displaying 1 - 15 of 15
By year of publication, then alphabetical by title
  1. Wilcox, Evan J., et al. “Bridging Gaps in Permafrost-Shrub Understanding”. PLOS Climate, vol. 3, 2024, https://doi.org/10.1371/journal.pclm.0000360.
  2. Tao, Jing, et al. “Evaluating the Impact of Peat Soils and Snow Schemes on Simulated Active Layer Thickness at Pan-Arctic Permafrost Sites”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad38ce.
  3. Huang, Xiang, et al. “How Does Humidity Data Impact the Land Surface Modeling of Hydrothermal Regimes at a Permafrost Site in Utqiaġvik, Alaska?”. Science of The Total Environment, vol. 912, 2024, https://doi.org/10.1016/j.scitotenv.2023.168697.
  4. Fiolleau, Sylvain, et al. “Insights on Seasonal Solifluction Processes in Warm Permafrost Arctic Landscape Using a Dense Monitoring Approach across Adjacent Hillslopes”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad28dc.
  5. Wang, Chen, et al. “Local-Scale Heterogeneity of Soil Thermal Dynamics and Controlling Factors in a Discontinuous Permafrost Region”. Environmental Research Letters, vol. 19, 2024, https://doi.org/10.1088/1748-9326/ad27bb .
  6. Berner, Logan T. “The Arctic Plant Aboveground Biomass Synthesis Dataset”. Scientific Data, vol. 11, 2024, https://doi.org/10.1038/s41597-024-03139-w.
  7. Renner, Caleb, et al. “The Next-Generation Ecosystem Experiment Arctic Rainfall Simulator: A Tool to Understand the Effects of Changing Rainfall Patterns in the Arctic”. Hydrology Research, vol. 55, 2024, https://doi.org/10.2166/nh.2023.146.
  8. Hanson, Paul J., et al. “A Method for Experimental Heating of Intact Soil Profiles for Application to Climate Change Experiments”. Global Change Biology, vol. 17, no. 2, 2011, pp. 1083-96, https://doi.org/10.1111/gcb.2010.17.issue-210.1111/j.1365-2486.2010.02221.x.
  9. Xu, Chonggang, et al. “Importance of Feedback Loops Between Soil Inorganic Nitrogen and Microbial Communities in the Heterotrophic Soil Respiration Response to Global Warming”. Nature Reviews Microbiology, vol. 9, no. 3, 2011, pp. 222-, https://doi.org/10.1038/nrmicro2439-c1.
  10. Frampton, Andrew, et al. “Non-Isothermal, Three-Phase Simulations of Near-Surface Flows in a Model Permafrost System under Seasonal Variability and Climate Change”. Journal of Hydrology, vol. 403, no. 3-4, 2011, pp. 352-9, https://doi.org/10.1016/j.jhydrol.2011.04.010.
  11. Koven, Charles D., et al. “Permafrost Carbon-Climate Feedbacks Accelerate Global Warming”. Proceedings of the National Academy of Sciences, vol. 108, no. 36, 2011, pp. 14769-74, https://doi.org/10.1073/pnas.1103910108.
  12. Wullschleger, Stan D., et al. “Planning the Next Generation of Arctic Ecosystem Experiments”. Eos, Transactions, American Geophysical Union, vol. 92, no. 17, 2011, p. 145, https://doi.org/10.1029/2011EO170006.
  13. Rowland, Joel C., et al. “The Role of Advective Heat Transport in Talik Development Beneath Lakes and Ponds in Discontinuous Permafrost”. Geophysical Research Letters, vol. 38, no. 17, 2011, https://doi.org/10.1029/2011GL048497.
  14. Rowland, Joel C., et al. “Arctic Landscapes in Transition: Responses to Thawing Permafrost”. Eos, Transactions, American Geophysical Union, vol. 91, no. 26, 2010, p. 229, https://doi.org/10.1029/2010EO260001.
  15. Wullschleger, Stan D., and Maya Strahl. “Climate Change: A Controlled Experiment”. Scientific American, vol. 302, no. 3, 2010, pp. 78-83, https://doi.org/10.1038/scientificamerican0310-78.