Publications

Displaying 41 - 60 of 84
By year of publication, then alphabetical by title
  1. Shirley, Ian A., et al. “Rapidly Changing High-Latitude Seasonality: Implications for the 21st Century Carbon Cycle in Alaska”. Environmental Research Letters, vol. 17, no. 1, 2022, p. 014032, https://doi.org/10.1088/1748-9326/ac4362.
  2. Rogers, Alistair, et al. “Reducing Model Uncertainty of Climate Change Impacts on High Latitude Carbon Assimilation”. Global Change Biology, vol. 28, no. 4, 2022, pp. 1222-47, https://doi.org/https://doi.org/10.1111/gcb.15958 .
  3. Yang, Dedi, et al. “Remote Sensing from Unoccupied Aerial Systems: Opportunities to Enhance Arctic Plant Ecology in a Changing Climate”. Journal of Ecology, vol. 110, no. 12, 2022, pp. 2812-35, https://doi.org/10.1111/1365-2745.13976.
  4. Nelson, Peter R., et al. “Remote Sensing of Tundra Ecosystems Using High Spectral Resolution Reflectance: Opportunities and Challenges”. Journal of Geophysical Research: Biogeosciences, vol. 127, no. 2, 2022, https://doi.org/10.1029/2021jg006697.
  5. Pallandt, Martijn, et al. “Representativeness Assessment of the Pan-Arctic Eddy Covariance Site Network and Optimized Future Enhancements”. Biogeosciences, vol. 19, no. 3, 2022, pp. 559-83, https://doi.org/10.5194/bg-19-559-2022.
  6. Sulman, Benjamin N., et al. “Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil”. Journal of Geophysical Research: Biogeosciences, vol. 127, no. 10, 2022, https://doi.org/10.1029/2021jg006662.
  7. Bennett, Katrina E., et al. “Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic”. The Cryosphere, 2022, https://doi.org/https://doi.org/10.5194/tc-2021-341.
  8. Farquharson, Louise M., et al. “Sub-Aerial Talik Formation Observed across the Discontinuous Permafrost Zone of Alaska”. Nature Geoscience, vol. 15, no. 6, 2022, pp. 475-81, https://doi.org/10.1038/s41561-022-00952-z.
  9. Virkkala, Anna-Maria, et al. “The ABCflux Database: Arctic–boreal CO2 Flux Observations and Ancillary Information Aggregated to Monthly Time Steps across Terrestrial Ecosystems”. Earth System Science Data, vol. 14, no. 1, 2022, pp. 179-08, https://doi.org/10.5194/essd-14-179-2022.
  10. Thoman, Richard L., et al. “The Arctic”. Bulletin of the American Meteorological Society, vol. 103, no. 8, 2022, pp. S257-S306, https://doi.org/10.1175/bams-d-22-0082.1.
  11. Jafarov, Elchin E., et al. “The Importance of freeze–thaw Cycles for Lateral Tracer Transport in Ice-Wedge Polygons”. The Cryosphere, vol. 16, no. 3, 2022, pp. 851-62, https://doi.org/10.5194/tc-16-851-2022.
  12. Frost, GV, et al. “Tundra Greenness”. NOAA Arctic Report Card 2022, 2022, https://doi.org/10.25923/g8w3-6v31.
  13. Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.
  14. Abbott, Benjamin W., et al. “We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems”. Frontiers in Environmental Science, vol. 10, 2022, https://doi.org/10.3389/fenvs.2022.889428.
  15. Mekonnen, Zelalem A, et al. “Wildfire Exacerbates High-Latitude Soil Carbon Losses from Climate Warming”. Environmental Research Letters, vol. 17, no. 9, 2022, p. 094037, https://doi.org/10.1088/1748-9326/ac8be6.
  16. Overeem, Irina, et al. “A Modeling Toolbox for Permafrost Landscapes”. Eos, Transactions, American Geophysical Union, vol. 99, 2018, https://doi.org/10.1029/2018EO105155.
  17. Jan, Ahmad, et al. “A Subgrid Approach for Modeling Microtopography Effects on Overland Flow”. Water Resources Research, vol. 54, no. 9, 2018, pp. 6153-67, https://doi.org/10.1029/2017WR021898.
  18. Wang, Kang, et al. “A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions for Alaska, USA”. Earth System Science Data, vol. 10, no. 4, 2018, pp. 2311-28, https://doi.org/10.5194/essd-10-2311-2018.
  19. Mekonnen, Zelalem A., et al. “Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra”. Journal of Geophysical Research: Biogeosciences, vol. 123, no. 5, 2018, pp. 1683-01, https://doi.org/10.1029/2017JG004319.
  20. Jan, Ahmad, et al. “An Intermediate-Scale Model for Thermal Hydrology in Low-Relief Permafrost-Affected Landscapes”. Computational Geosciences, 2018, https://doi.org/10.1007/s10596-017-9679-3.