Publications

Displaying 41 - 58 of 58
By year of publication, then alphabetical by title
  1. Wullschleger, Stan D., et al. “Plant Functional Types in Earth System Models: Past Experiences and Future Directions for Application of Dynamic Vegetation Models in High-Latitude Ecosystems”. Annals of Botany, vol. 114, no. 1, 2014, pp. 1-16, https://doi.org/10.1093/aob/mcu077.
  2. Tang, Jinyun Y., and William J. Riley. “Technical Note: Simple Formulations and Solutions of the Dual-Phase Diffusive Transport for Biogeochemical Modeling”. Biogeosciences , vol. 11, no. 11, 2014, pp. 3721–3728, https://doi.org/doi.org/10.5194/bg-11-3721-2014.
  3. Hayes, Daniel J., et al. “The Impacts of Recent Permafrost Thaw on land–atmosphere Greenhouse Gas Exchange”. Environmental Research Letters, vol. 9, no. 4, 2014, p. 045005, https://doi.org/10.1088/1748-9326/9/4/045005.
  4. Jansson, Janet K., and Neslihan Taş. “The Microbial Ecology of Permafrost”. Nature Reviews Microbiology, vol. 12, no. 6, 2014, pp. 414-25, https://doi.org/10.1038/nrmicro3262.
  5. Rogers, Alistair. “The Use and Misuse of Vc,max in Earth System Models”. Photosynthesis Research, vol. 119, no. 1-2, 2014, pp. 15-29, https://doi.org/10.1007/s11120-013-9818-1.
  6. Karra, Satish, et al. “Three-Phase Numerical Model for Subsurface Hydrology in Permafrost-Affected Regions (PFLOTRAN-ICE v1.0)”. The Cryosphere, vol. 8, no. 5, 2014, pp. 1935-50, https://doi.org/10.5194/tc-8-1935-2014.
  7. Tang, Jinyun Y., and William J. Riley. “A Total Quasi-Steady-State Formulation of Substrate Uptake Kinetics in Complex Networks and an Example Application to Microbial Litter Decomposition”. Biogeosciences, vol. 10, no. 12, 2013, pp. 8329-51, https://doi.org/10.5194/bg-10-8329-201310.5194/bg-10-8329-2013-supplement.
  8. Skurikhin, Alexei N., et al. “Arctic Tundra Ice-Wedge Landscape Characterization by Active Contours Without Edges and Structural Analysis Using High-Resolution Satellite Imagery”. Remote Sensing Letters, vol. 4, no. 11, 2013, pp. 1077-86, https://doi.org/10.1080/2150704X.2013.840404.
  9. Dafflon, Baptiste, et al. “Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data”. Vadose Zone Journal, vol. 12, no. 4, 2013, https://doi.org/10.2136/vzj2012.0161.
  10. Cunningham, Philip, et al. “Large-Eddy Simulations of Air Flow and Turbulence Within and Around Low-Aspect-Ratio Cylindrical Open-Top Chambers”. Journal of Applied Meteorology and Climatology, vol. 52, no. 8, 2013, pp. 1716-37, https://doi.org/10.1175/JAMC-D-12-041.1.
  11. Painter, Scott L., et al. “Modeling Challenges for Predicting Hydrologic Response to Degrading Permafrost”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 221-4, https://doi.org/10.1007/s10040-012-0917-4.
  12. Frampton, Andrew, et al. “Permafrost Degradation and Subsurface-Flow Changes Caused by Surface Warming Trends”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 271-80, https://doi.org/10.1007/s10040-012-0938-z.
  13. Hinzman, Larry D., et al. “Preface: Hydrogeology of Cold Regions”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 1-4, https://doi.org/10.1007/s10040-012-0943-2.
  14. Hubbard, Susan S., et al. “Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 149-6, https://doi.org/10.1007/s10040-012-0939-y.
  15. Wu, Yuxin, et al. “Remote Monitoring of freeze–thaw Transitions in Arctic Soils Using the Complex Resistivity Method”. Vadose Zone Journal, vol. 12, no. 1, 2013, https://doi.org/10.2136/vzj2012.0062.
  16. Hoffman, Forrest M., et al. “Representativeness-Based Sampling Network Design for the State of Alaska”. Landscape Ecology, vol. 28, no. 8, 2013, pp. 1567-86, https://doi.org/10.1007/s10980-013-9902-0.
  17. Hinzman, Larry D., et al. “Trajectory of the Arctic As an Integrated System”. Ecological Applications, vol. 23, no. 8, 2013, pp. 1837-68, https://doi.org/10.1890/11-1498.1.
  18. Riley, William J. “Using Model Reduction to Predict the Soil-Surface C<sup>18< sup> Carbon Dioxide Flux: An Example of Representing Complex Biogeochemical Dynamics in a Computationally Efficient Manner”. Geoscientific Model Development, vol. 6, no. 2, 2013, pp. 345-52, https://doi.org/10.5194/gmd-6-345-2013.