Tying Together Iron and Carbon Cycling in the Arctic

Date Published

Iron cycling is key to modeling greenhouse gas emissions from permafrost soils.

Objective

Emissions of methane, a powerful greenhouse gas, could increase as frozen soils in cold regions thaw. This study used a new computer model to simulate how iron, oxygen, and carbon interact to drive carbon dioxide and methane emissions in waterlogged permafrost soils. Iron-reducing microorganisms used iron to fuel carbon dioxide production, but the effect of iron cycling on methane production depended on availability of easily decomposable carbon. When iron reducers competed with methane producers for a small amount of available carbon, methane production declined. However, when easily decomposed carbon was abundant, iron reduction enhanced methane production by decreasing soil acidity.

New Science

Methane production is sensitive to soil acidity. Many Arctic soils are rich in iron, which some soil microorganisms can use instead of oxygen for respiration through iron reduction. This produces carbon dioxide while decreasing soil acidity. Computer models that currently predict greenhouse gas emissions from thawing Arctic soils do not include iron or acidity changes. This study used a chemical reaction network model to simulate interactions of iron reduction, methane production, and organic matter decomposition in permafrost soils. The model was compared to measurements of carbon dioxide and methane production as well as soil acidity from a series of laboratory incubation experiments. The model then simulated cycles of waterlogged and aerated conditions to test how iron affected production of greenhouse gases over multiple cycles. Iron reduction occurred during waterlogged periods, producing carbon dioxide and reducing soil acidity, while iron was recycled during aerated periods. Because methane-producing microorganisms prefer less acidic soil conditions, iron reduction enhanced methane production when there was enough available organic matter to support both processes. When easily decomposed organic matter was more limited, iron reducers competed with methane producers, leading to lower methane production.

Impact

As frozen soils thaw, carbon within them can be converted to carbon dioxide or methane gas. Because methane has a stronger climate warming effect than carbon dioxide, the relative amounts of the two gases that are produced from decomposition are important to predict the impact of permafrost thaw on climatic warming. Iron is thought to suppress production of methane, but results show that iron could enhance methane production in some soils. This study builds groundwork for improving predictions of Arctic feedbacks to climate change by including iron effects on greenhouse gas production from thawing permafrost.

Image with caption
Image
Diagram of the chemical reaction network used to simulate carbon-iron interactions.

Diagram of the chemical reaction network used to simulate carbon-iron interactions.

Citation(s)
Text

Sulman, B. N., et al. "Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil." Journal of Geophysical Research: Biogeosciences 127 (10), e2021JG006662  (2022). https://doi.org/10.1029/2021JG006662.

Funding

This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Next-Generation Ecosystem Experiments (NGEE Arctic) project.

For more information, please contact:

Benjamin Sulman

sulmanbn@ornl.gov
Field Location(s)
Project Phase(s)