Publications

Displaying 21 - 35 of 35
By year of publication, then alphabetical by title
  1. Schore, Aiden I. G., et al. “Nitrogen Fixing Shrubs Advance the Pace of Tall-Shrub Expansion in Low-Arctic Tundra”. Communications Earth & Environment, vol. 4, 2023, https://doi.org/https://doi.org/10.1038/s43247-023-01098-5.
  2. Chang, Kuang‐Yu, et al. “Observational Constraints Reduce Model Spread But Not Uncertainty in Global Wetland Methane Emission Estimates”. Global Change Biology, vol. 29, no. 15, 2023, pp. 4298-12, https://doi.org/10.1111/gcb.16755.
  3. Del Vecchio, Joanmarie, et al. “Patterns and Rates of Soil Movement and Shallow Failures across Several Small Watersheds on the Seward Peninsula, Alaska”. Earth Surface Dynamics, vol. 11, no. 2, 2023, pp. 227-45, https://doi.org/10.5194/esurf-11-227-2023.
  4. Yang, Dedi, et al. “PiCAM: A Raspberry Pi-Based Open-Source, Low-Power Camera System for Monitoring Plant Phenology in Arctic Environments”. Methods in Ecology and Evolution, vol. 14, 2023, https://doi.org/10.1111/2041-210X.14231.
  5. Mevenkamp, Hannah, et al. “Reducing Uncertainty of High-Latitude Ecosystem Models through Identification of Key Parameters”. Environmental Research Letters, vol. 18, 2023, https://doi.org/10.1088/1748-9326/ace637.
  6. Tang, Jinyun, and William J. Riley. “Revising the Dynamic Energy Budget Theory With a New Reserve Mobilization Rule and Three Example Applications to Bacterial Growth”. Soil Biology and Biochemistry, vol. 178, 2023, p. 108954, https://doi.org/10.1016/j.soilbio.2023.108954.
  7. Wielandt, Stijn, et al. “TDD LoRa and Delta Encoding in Low-Power Networks of Environmental Sensor Arrays for Temperature and Deformation Monitoring”. Journal of Signal Processing Systems, 2023, https://doi.org/10.1007/s11265-023-01834-2.
  8. Santos, Fernanda, et al. “The Eco-Evolutionary Role of Fire in Shaping Terrestrial Ecosystems”. Functional Ecology, vol. 37, no. 8, 2023, https://doi.org/https://doi.org/10.1111/1365-2435.14387.
  9. McGuire, David, et al. “An Assessment of the Carbon Balance of Arctic Tundra: Comparisons Among Observations, Process Models, and Atmospheric Inversions”. Biogeosciences, vol. 9, no. 8, 2012, pp. 3185-04, https://doi.org/10.5194/bg-9-3185-201210.5194/bg-9-3185-2012-supplement.
  10. Lewis, K. C., et al. “Drainage Subsidence Associated With Arctic Permafrost Degradation”. Journal of Geophysical Research, vol. 117, no. F4, 2012, https://doi.org/10.1029/2011JF002284.
  11. Lee, Hanna, et al. “Enhancing Terrestrial Ecosystem Sciences by Integrating Empirical Modeling Approaches”. Eos, Transactions, American Geophysical Union, vol. 93, no. 25, 2012, pp. 237-, https://doi.org/10.1029/2012EO250008.
  12. McCarthy, Heather R., et al. “Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes”. New Phytologist, vol. 195, no. 3, 2012, pp. 523-5, https://doi.org/10.1111/j.1469-8137.2012.04222.x.
  13. Graham, David E., et al. “Microbes in Thawing Permafrost: The Unknown Variable in the Climate Change Equation”. The ISME Journal, vol. 6, no. 4, 2012, pp. 709-12, https://doi.org/10.1038/ismej.2011.163.
  14. Xu, Chonggang, et al. “Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics”. PLOS ONE, vol. 7, no. 5, 2012, p. e37914, https://doi.org/10.1371/journal.pone.0037914.
  15. Bouskill, Nicholas J., et al. “Trait-Based Representation of Biological Nitrification: Model Development, Testing, and Predicted Community Composition”. Frontiers in Microbiology, vol. 3, 2012, https://doi.org/10.3389/fmicb.2012.00364.