Publications

Displaying 21 - 40 of 49
By year of publication, then alphabetical by title
  1. Rogers, Alistair, et al. “Reducing Model Uncertainty of Climate Change Impacts on High Latitude Carbon Assimilation”. Global Change Biology, vol. 28, no. 4, 2022, pp. 1222-47, https://doi.org/https://doi.org/10.1111/gcb.15958 .
  2. Yang, Dedi, et al. “Remote Sensing from Unoccupied Aerial Systems: Opportunities to Enhance Arctic Plant Ecology in a Changing Climate”. Journal of Ecology, vol. 110, no. 12, 2022, pp. 2812-35, https://doi.org/10.1111/1365-2745.13976.
  3. Nelson, Peter R., et al. “Remote Sensing of Tundra Ecosystems Using High Spectral Resolution Reflectance: Opportunities and Challenges”. Journal of Geophysical Research: Biogeosciences, vol. 127, no. 2, 2022, https://doi.org/10.1029/2021jg006697.
  4. Pallandt, Martijn, et al. “Representativeness Assessment of the Pan-Arctic Eddy Covariance Site Network and Optimized Future Enhancements”. Biogeosciences, vol. 19, no. 3, 2022, pp. 559-83, https://doi.org/10.5194/bg-19-559-2022.
  5. Sulman, Benjamin N., et al. “Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil”. Journal of Geophysical Research: Biogeosciences, vol. 127, no. 10, 2022, https://doi.org/10.1029/2021jg006662.
  6. Bennett, Katrina E., et al. “Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic”. The Cryosphere, 2022, https://doi.org/https://doi.org/10.5194/tc-2021-341.
  7. Farquharson, Louise M., et al. “Sub-Aerial Talik Formation Observed across the Discontinuous Permafrost Zone of Alaska”. Nature Geoscience, vol. 15, no. 6, 2022, pp. 475-81, https://doi.org/10.1038/s41561-022-00952-z.
  8. Virkkala, Anna-Maria, et al. “The ABCflux Database: Arctic–boreal CO2 Flux Observations and Ancillary Information Aggregated to Monthly Time Steps across Terrestrial Ecosystems”. Earth System Science Data, vol. 14, no. 1, 2022, pp. 179-08, https://doi.org/10.5194/essd-14-179-2022.
  9. Thoman, Richard L., et al. “The Arctic”. Bulletin of the American Meteorological Society, vol. 103, no. 8, 2022, pp. S257-S306, https://doi.org/10.1175/bams-d-22-0082.1.
  10. Jafarov, Elchin E., et al. “The Importance of freeze–thaw Cycles for Lateral Tracer Transport in Ice-Wedge Polygons”. The Cryosphere, vol. 16, no. 3, 2022, pp. 851-62, https://doi.org/10.5194/tc-16-851-2022.
  11. Frost, GV, et al. “Tundra Greenness”. NOAA Arctic Report Card 2022, 2022, https://doi.org/10.25923/g8w3-6v31.
  12. Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.
  13. Abbott, Benjamin W., et al. “We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems”. Frontiers in Environmental Science, vol. 10, 2022, https://doi.org/10.3389/fenvs.2022.889428.
  14. Mekonnen, Zelalem A, et al. “Wildfire Exacerbates High-Latitude Soil Carbon Losses from Climate Warming”. Environmental Research Letters, vol. 17, no. 9, 2022, p. 094037, https://doi.org/10.1088/1748-9326/ac8be6.
  15. Pau, George Shu Heng, et al. “A Reduced-Order Modeling Approach to Represent Subgrid-Scale Hydrological Dynamics for Land-Surface Simulations: Application in a Polygonal Tundra Landscape”. Geoscientific Model Development, vol. 7, no. 5, 2014, pp. 2091-05, https://doi.org/10.5194/gmd-7-2091-2014.
  16. Riley, William J., and Chaopeng Shen. “Characterizing Coarse-Resolution Watershed Soil Moisture Heterogeneity Using Fine-Scale Simulations and Reduced-Order Models”. Hydrology and Earth System Sciences, vol. 18, no. 7, 2014, pp. 2463-8, https://doi.org/10.5194/hess-18-2463-2014.
  17. Painter, Scott L., and Satish Karra. “Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils”. Vadose Zone Journal, vol. 13, no. 4, 2014, https://doi.org/10.2136/vzj2013.04.0071.
  18. Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
  19. Dou, Shan, and Jonathan B. Ajo-Franklin. “Full-Wavefield Inversion of Surface Waves for Mapping Embedded Low-Velocity Zones in Permafrost”. GEOPHYSICS, vol. 79, no. 6, 2014, pp. EN107 - EN124, https://doi.org/10.1190/geo2013-0427.1.
  20. Rogers, Alistair, et al. “Improving Representation of Photosynthesis in Earth System Models”. New Phytologist, vol. 204, no. 1, 2014, pp. 12-14, https://doi.org/10.1111/nph.12972.