NGEE-Arctic Phase 1 Scaling Objectives

e Deliver fine scale models of coupled surface-
subsurface thermal-hydrological-biogeochemical
dynamics, informed by observations from BEO
and broader Arctic tundra landscape.

e Deliver climate-scale models which receive
initialization and parameterization information
(modeled and observed) from finer scales.

e Demonstrate improved climate-scale process
representation through upscaling and
downscaling iteration: evaluate against
independent observations.

Peter Thornton — Scaling Philosophy and Progress in Phase-1 12/13/2014, NGEE-Arctic All-Hands Meeting
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Fine-scale modeling lessons learned
(the non-expert’s interpretation)

Compre55|b|I|ty of soil matrix is an essentlal feature

ih7|mulat|ons

e Surface flows in flat terrain require velocity damping
to avoid “sloshing”

* Not all surface grids are created equal

e Snow pack accumulation/melt and snow
redistribution important and challenging



Fine-scale modeling highlights

e 1D, 2D, and 3D surface-subsurface thermal-
hydrology coupling achieved in ATS.
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e 1D, 2D surface-subsurface thermal-hydrology
coupling achieved in CLM-PFLOTRAN.
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Coupling to biogeochemistry

PFLOTRAN reaction networks can now
reproduce behavior of CLM biogeochemistry.

BGC can be driven by thermal-hydrology from
either CLM or PFLOTRAN.

Generality still being explored for other
species (e.g. CH,, P cycle) and for redox
reactions.

Allows evaluation of multiple nutrient
limitation hypotheses.



Climate-scale modeling

 Multiple interacting column hydrology
evaluated (collaboration with ORNL TES-SFA,

CLM-SPRUCE)

 Broad-scale Arctic PFTs parameterized, using
field observations and parameter
optimization, demonstrated in CLM-PF
(Fengming Yuan, poster).

* Inundated area fraction parameterization
remains to be done (primary scaling variable)



Intermediate-scale modeling

* Explorations of intermediate-scale meshing
and PFLOTRAN simulations underway
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Coming up:

e Mark Lara

— Geomorphology and landscape characterization,
with upscaling and modeling applications

e Scott Painter and Ethan Coon

— Arctic Terrestrial Simulator (ATS) results and
connection to observations

e Gautam Bisht

— Reduced form modeling results and application to
scaling
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