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Motivation

Soils store several times more carbon than either the
atmosphere or terrestrial vegetation

— C-climate feedbacks are critical for climate prediction

— Wide range of predictions for soil carbon stocks and
changes over the 215 century (Todd-Brown et al., 2013)
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However, large problems
persist in CLM4.5
— Alaskan SOM spatial

structure: Mishra and Riley
(in review Vadose Zone J.)

— Pan-Arctic and global
distributions of SOM, GPP,
LAI, etc.

We hypothesize that a big
part of the problem lies in
the methods used to
represent nutrient
dynamics, losses, and
impacts on plant processes
— See Bardan Ghimire’s and

Chonggang Xu's posters
here



MODEX Belowground
Motivation

e Clearly, problems
remain with:

— Representation of
soil C, nutrient
biogeochemistry,
and nutrient
competition

Arctic tundra warming and N

addition meta-analysis

compared with CLM (Bouskill et
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Resolving these issues is critical to developing good
NGEE-Arctic Carbon cycle predictions

Koven et al. (in review PNAS)
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SOM Models

e Current pseudo-first-order model structures:

— Based on comparisons with equilibrium carbon stocks

— Impose static functions for temperature sensitivities
based on incubation or field studies

— Largely ignore abiotic and microbial controls
e Vertically-resolved microbe-enabled models

(MEMs) for SOM dynamics pose alternative

hypotheses (Riley et al. 2014 GMD; Dwivedi et al.
poster)

* These models have different levels of mechanistic
representation and also perform very differently

— What level of MEM complexity is required to resolve
SOM dynamics?



e Surface CO, flux Observations Imply

measurements from 48 Hichlv Variable
profiles at the NGEE- | shly Q0

Arctic sites

— Centers, edges, and
troughs

— 16 polygons in areas A, B,
C,and D

— Repeated measurements g
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September 2013 0.01
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e Chowdhury et al. (2014) found Q,, varying
from 1.6 to 7.1 for CO, temperature sensitivity
using laboratory incubations of soils from the

NGEE-Arctic sites



Soil respiration (i molm-2s~1)

Observations Imply Highly Variable Q,,

R?=0.78, P<0.0001

R#=0.78, P<0.0001

=== Lloyd & Taylor function: E;=309; R,5;=1.78; T;=235.56

Soil temperature (°C)

Q,, = 4.2 for entire record
Q,, = 3 for summer
Q,, = 23 in winter
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Observations Imply Highly Variable Q,,

S == == Lloyd & Taylor function: E,=2309; R.g5=1.78; T,=235.56
AP D'?E_‘ P<0.0001 ° %ﬁ% Q,, = 4.2 for entire record
Y D;Dfunctlon: Rig=1.72; Qyp=4.21 . EP 0 Q,, = 3 for summer
— R==0.78, P<0.0001 0% & . .
o o g &P 8 o }4 Q,, = 23 in winter
“If soil respiration needs to be simulated over time
periods from days to weeks, ..., more short-term
n is required”

é », -r: e

0= ' ' ' 1'6 Beech Forest
Janssens & Pilegaard, 2003

Soil temperature (°C)



CUE/CUE,

Micrabial efficiency (%)

CUE Temperature Sensitivity Also
Highly Variable
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+ Mineral-Surface Interactions
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Temperature Sensitivities
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See Maggi and Riley (2014, Biogeosciences Discussion) for a MODEX approach using
nine independent denitrification experiments, the Arrhenius rate law, and Eyring’s
transition-state theory to estimate temperature impacts on reaction rate constants,
affinities, and kinetic isotopic effects.



Competition

e Soil BGC dynamics depend on functional and
trait-based microbial processes (Bouskill et al.
2012, Frontiers Microbiology)

e Competition in a consumer-substrate network
can be formulated as an equilibrium chemistry
problem (Tang and Riley 2013, Biogeosciences)

— Numerical solution is computationally expensive

* First-order accurate EC approximation (ECA)

— ECA improves upon the widely used Michaelis-
Menten representation of enzyme-substrate kinetics
for complex systems

— Generalizable to, e.g., nutrient interactions and
predator-prey systems



ECA Kinetics
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D Model] prediction Example empirical studies

1 Total 50M stock increases with mineral Torn et al. 30, Sollins et al 1
surface protection capacity (Figure 512b)

2 Total 50M stock increases with carbon input  Liao et al. 32, Hungate ef al.
rate [Figure 512a) a3

3 Decomposition rate per unit total SOM mass Jenkinson and Coleman 34
decreases with mineral surface protection
capacity [Figure 1)

4 CUE is highly variable (Figures 2) Lopez-Urrutia and Moran

35, Sinsabaugh et al. 35

) Decomposition temperature sensitivity has Janssens and Pilegaard 37
seasonal variability [Figures 1 and 54)

) There is an optimal temperature for Balser and Wixon 2
decomposition (Figures 1, 56 and 511)

7 Respiration temperature response is Balser and Wixon
asymmetric (Figures 1, S4, 56 and 511)

g Decomposition temperature sensitivity is Hamdi et al ¥
higher at lower temperature (Figure 54)

9 “Labile” carbon can be preserved for long Klebber et al 4
periods (Figure 513)

10 “Recalcitrant” carbon decomposition is more  Conant etal ¥
temperature sensitive [Figures 54)

11 Under otherwise equivalent conditions, Conant et al 27
decomposition temperature sensitivity
increases with higher substrate activation
energy (Figure 54)

12 Temporal average could underestimate Janssens and Pilegaard *7

decomposition temperature sensitivity

[Figure 54

The model has
been tested
against many
metrics that
most microbe-
enabled models
will not be able
to satisfy

However,
further testing is
clearly
warranted

Tang and Riley, 2014, Nature CC
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CUE Predictions
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* For constant
temperature, CUE
dependence appears
consistent with current
formulations used in
land BGC models

* However, ...



CUE Predictions
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CUE

Highly Variable CUE Precludes Direct
Empirical CUE Parameterization

0.5 .
Constant T

X

== Rigid microbe
— Plastic microbe

0.4

0.37

0.21

0.1y

280 290 300
Temperature (K)

0
270

310

CUE

0.5 - ¢ 0.6 -
Seasonal T Diurnal T
0.4r
0.3t
0.2r
01 — Rigid microbe 0.2, Rigid microbe
- Plastic microbe e Plastic microbe
0 : : : -04 : : :
270 280 290 300 310 270 280 290 300 310

Temperature (K)

Temperature (K)

 Hourly variation gives very different functional form

 There are insufficient empirical data to fully characterize
CUE temperature dependence variability
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Interpreting “Recalcitrance” from

[a} [

o) [ Incubations

':g 2l —o— 35°C

g ° &"«\ Equal Carbon Incubation
Sl W method (Conant et al., 2008)
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Summary

* Observations suggest highly variable Q,, and CUE

e Our model with microbes, mineral surfaces, and
process-specific temperature sensitivities:

— Is consistent with observed temperature sensitivity
dynamics

— Highlights deficiencies in interpreting and applying
laboratory incubations in land BGC models

* Q,,and CUE temperature sensitivity are emergent dynamic
properties, not static functions

— Leads to smaller predictions of temperature change
impacts on SOM stocks

e MODEX implications

— Falsifying the hypotheses presented here requires high
temporal resolution incubations with measurements of
e Substrates
e Microbial community activity and structure
* Exoenzymes
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Incubations May Confound Multiple
Controllers of Temperature Sensitivity
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Intrinsic decomposability depends on
sampling time

a Initial condition sampling diagram
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e Uncertainty in SOM predictions result from:

— Incorrect temporal forcing and averaging of
respiration and temperature

— Misinterpretation of mineral surface interactions

— Ignoring microbial plasticity
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