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Motivation 
• Soils store several times more carbon than either the 

atmosphere or terrestrial vegetation 
– C-climate feedbacks are critical for climate prediction 
– Wide range of predictions for soil carbon stocks and 

changes over the 21st century (Todd-Brown et al., 2013) 
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• However, large problems 
persist in CLM4.5 
– Alaskan SOM spatial 

structure: Mishra and Riley 
(in review Vadose Zone J.) 

– Pan-Arctic and global 
distributions of SOM, GPP, 
LAI, etc. 

• We hypothesize that a big 
part of the problem lies in 
the methods used to 
represent nutrient 
dynamics, losses, and 
impacts on plant processes 
– See Bardan Ghimire’s and 

Chonggang Xu’s posters 
here Soil Carbon (kg C m-2) 

CLM4.5 



MODEX Belowground 
Motivation 

• Clearly, problems 
remain with: 
– Representation of 

soil C, nutrient 
biogeochemistry, 
and nutrient 
competition 

Arctic tundra warming and N 
addition meta-analysis 

compared with CLM (Bouskill et 
al., 2014; Biogeosciences) 



Thaw depth, nutrient release, competition 
with plants result in very large differences in 

ecosystem C stocks  

Koven et al. (in review PNAS) 
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More “labile” Deep 
PF Carbon 

Resolving these issues is critical to developing good 
NGEE-Arctic Carbon cycle predictions 



SOM Models 
• Current pseudo-first-order model structures: 

– Based on comparisons with equilibrium carbon stocks 
– Impose static functions for temperature sensitivities 

based on incubation or field studies 
– Largely ignore abiotic and microbial controls  

• Vertically-resolved microbe-enabled models 
(MEMs) for SOM dynamics pose alternative 
hypotheses (Riley et al. 2014 GMD; Dwivedi et al. 
poster) 

• These models have different levels of mechanistic 
representation and also perform very differently 
– What level of MEM complexity is required to resolve 

SOM dynamics? 



 

• Surface CO2 flux 
measurements from 48 
profiles at the NGEE-
Arctic sites  
– Centers, edges, and 

troughs  
– 16 polygons in areas A, B, 

C, and D   
– Repeated measurements 

during July, August, and 
September 2013 

• Chowdhury et al. (2014) found Q10 varying 
from 1.6 to 7.1 for CO2 temperature sensitivity 
using laboratory incubations of soils from the 
NGEE-Arctic sites 

Observations Imply 
Highly Variable Q10 



Beech Forest 
Janssens & Pilegaard, 2003 

8 

Q10 = 4.2 for entire record 
Q10 = 3 for summer 
Q10 = 23 in winter 

Observations Imply Highly Variable Q10 



Beech Forest 
Janssens & Pilegaard, 2003 

9 

Q10 = 4.2 for entire record 
Q10 = 3 for summer 
Q10 = 23 in winter 

“If soil respiration needs to be simulated over time 
periods from days to weeks, …, more short-term 

parameterization is required” 

Observations Imply Highly Variable Q10 



CUE Temperature Sensitivity Also 
Highly Variable 

Manzoni et al. 2012 

Dijkstra et al. 2011 

Hagerty et al. 2014 

Frey et al. 2013 



Microbe-Explicit Model 

Tang and Riley, 2014, Nature CC 

DEB Theory 
Kooijman 2008 



+ Mineral-Surface Interactions 

Tang and Riley, 2014, Nature CC 

DEB Theory 
Kooijman 2008 



Temperature Sensitivities 
Transition state 
theory: substrate 
conversion 

Arrhenius rate law: 
reversible binding 
processes, cell 
maintenance 

Enzyme stability 



Temperature Sensitivities 
Transition state 
theory: substrate 
conversion 

Arrhenius rate law: 
reversible binding 
processes, cell 
maintenance 

Enzyme stability 

See Maggi and Riley (2014, Biogeosciences Discussion) for a MODEX approach using 
nine independent denitrification experiments, the Arrhenius rate law, and Eyring’s 
transition-state theory to estimate temperature impacts on reaction rate constants, 
affinities, and kinetic isotopic effects. 



Competition 
• Soil BGC dynamics depend on functional and 

trait-based microbial processes (Bouskill et al. 
2012, Frontiers Microbiology) 

• Competition in a consumer-substrate network 
can be formulated as an equilibrium chemistry 
problem (Tang and Riley 2013, Biogeosciences) 
– Numerical solution is computationally expensive 

• First-order accurate EC approximation (ECA) 
– ECA improves upon the widely used Michaelis-

Menten representation of enzyme-substrate kinetics 
for complex systems 

– Generalizable to, e.g., nutrient interactions and 
predator-prey systems 



ECA Kinetics 

Method facilitates inclusion of an arbitrary number of 
inhibitory mechanisms, microbial traits, and sorption 

(Tang and Riley 2013, Biogeosciences) 



Tang and Riley, 2014, Nature CC 

• The model has 
been tested 
against many 
metrics that 
most microbe-
enabled models 
will not be able 
to satisfy 

• However, 
further testing is 
clearly 
warranted 



CUE Predictions 

Yearly 

• For constant 
temperature, CUE 
dependence appears 
consistent with current 
formulations used in 
land BGC models 

• However, … 

Constant T 



CUE Predictions 

Yearly 

• Seasonal 
cycle 
forcing 
gives 
different 
emergent 
responses 
for rigid and 
plastic 
microbes 

• And … 

Seasonal T Constant T 



Highly Variable CUE Precludes Direct 
Empirical CUE Parameterization 

Yearly 

• Hourly variation gives very different functional form 
• There are insufficient empirical data to fully characterize 

CUE temperature dependence variability 

Seasonal T Constant T Diurnal T 

Tang and Riley, 2014, Nature CC 



Interpreting “Recalcitrance” from 
Incubations 

Equal Carbon Incubation 
method (Conant et al., 2008) 

“Recalcitrant” 

“Labile” 

Predictions with only 
one substrate, one 
microbe, and abiotic 
interactions have  
• Same functional form 
• Very different 

interpretation 



Impacts 

Constant 
Seasonal 
Diurnal 

Tang and Riley, 2014, Nature CC 



Summary 
• Observations suggest highly variable Q10 and CUE 
• Our model with microbes, mineral surfaces, and 

process-specific temperature sensitivities: 
– Is consistent with observed temperature sensitivity 

dynamics 
– Highlights deficiencies in interpreting and applying 

laboratory incubations in land BGC models 
• Q10 and CUE temperature sensitivity are emergent dynamic 

properties, not static functions 
– Leads to smaller predictions of temperature change 

impacts on SOM stocks 
• MODEX implications 

– Falsifying the hypotheses presented here requires high 
temporal resolution incubations with measurements of  

• Substrates 
• Microbial community activity and structure 
• Exoenzymes 
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Emergent respiration temperature 
sensitivity 



Incubations May Confound Multiple 
Controllers of Temperature Sensitivity 

Balser and Wixon, 2009 

Plastic microbe; Seasonal T 
Rigid microbe; Seasonal T 

Plastic microbe; Diurnal T 
Rigid microbe; Diurnal T 



Impacts 

Constant T; M = 1000 gC eqv Seasonal T; M = 1000 gC eqv Diurnal T; M = 1000 gC eqv 



Intrinsic decomposability depends on 
sampling time 



CUE Impacts 



• Uncertainty in SOM predictions result from: 
– Incorrect temporal forcing and averaging of 

respiration and temperature 
– Misinterpretation of mineral surface interactions 
– Ignoring microbial plasticity 
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